Skip to main content

The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water

Abstract

The accumulation of inorganic phosphate in lake sediments and a possible following release is due to the adsorption of phosphate onto Fe(OOH) and, especially in hard waters, to the precipitation of apatite. Attempts are made to quantify both processes.

For the quantification of the P adsorbed, Pads, onto Fe(OOH) the Freundlich adsorption isotherm, Pads=A(o-P)B, gave good results. The constants A and B could be quantified. Constant A appeared to depend on the pH and the Ca2+ and Mg2+ concentrations in the water. Constant B appeared to approach 0.333. The full equation becomes then: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0dh9WrFfpC0xh9vqqj-hEeeu0xXdbba9frFj0-OqFf% ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr% 0-vqpWqaaeaabaGaciaacaqabeaadaqaaqaaaOqaaiaadcfadaWgaa% WcbaGaamyyaiaadsgacaWGZbaabeaakiabg2da9iaaikdacaaIZaGa% aGOnaiaaicdacaaIWaGaaiOlaiaacIcacaaIXaGaaGimamaaCaaale% qabaGaaGimaiaac6cacaaI0aacbiGaa8hCaiaa-HeaaaGccaGGPaGa% aiikaiaaikdacaGGUaGaaG4naiaaiEdacqGHsislcaaIXaGaaiOlai% aaiEdacaaI3aGaai4oaiaadwgadaahaaWcbeqaaiabgkHiTiaa-nea% caWFHbaaaOGaaiykamaakeaabaGaam4BaiabgkHiTiaadcfaaSqaai% aaiodaaaaaaa!57AF!\[P_{ads} = 23600.(10^{0.4pH} )(2.77 - 1.77;e^{ - Ca} )\sqrt[3]{{o - P}}\]. with the Ca concentration in mmol l−1 and the o-P and Pads concentrations in mg l−1.

For the quantification of the solubility of calcium-bound phosphate the solubility product of apatite being 10−50, as found in the two hard water rivers Rhine and Rhone, was used. With this solubility product the solubility of o-P can be calculated as function of the Ca2+ concentration and the pH. The two equations, for adsorption and precipitation, are put together in a so-called solubility diagramme, which describes the o-P concentration as function of the Fe(OOH) concentration in the sediments, and the pH and the Ca2+ concentration in the overlying water.

The release of phosphate from the Fe(OOH)≈P complex under anoxic conditions after adding H2S in inorganic suspensions was shown to be limited. Only when a large excess of H2S was added there was some release, but if less than 75% of the Fe(OOH) was converted into FeS, there was no release. The possibility of organic phosphate as the source of phosphate release under anoxic conditions is discussed. For a full understanding of this possibility, fractionation of sediment bound phosphate must be carried out in such a way, that these organic phosphates are not hydrolysed.

This is a preview of subscription content, access via your institution.

References

  1. Beek, J., W. H. Van Riemsdijk & K. Koenders, 1980. Aluminium and iron fractions affecting phosphate bonding in a sandy soil treated with sewage water. In. A. Banin & U. Kafkai (eds), Proc. Symp. Agrochemicals in Soils. Pergamon Press. 369–378.

  2. Bostrøm, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  3. Brinkman, A. G., 1993. A double-layer model for ion adsorption onto metal oxides, applied to experimental data and to natural sediments of Lake Veluwe, The Netherlands. Hydrobiologia 253: 31–45.

    Google Scholar 

  4. Caraco, N. F., J. J. Cole & G. E. Likens, 1993. Sulfate control of phosphorus availability in lakes. Hydrobiologia 253: 275–280.

    Google Scholar 

  5. Danen-Louwerse, H., L. Lijklema & M. Coenraats, 1993. Iron content of sediment and phosphate adsorption process. Hydrobiologia 253: 311–317.

    Google Scholar 

  6. De Groot, C. J., 1991. The influence of FeS on the inorganic phosphate system in sediments. Verh. Int. Ver. Limnol. Vol. 23, 3029–3035.

    Google Scholar 

  7. De Groot C. J. & A. C. Fabre, 1993. The impact of desiccation of a freshwater marsh (Garcines Nord, Camargue, France) on the sediment water vegetation interactions. Part 3. The fractional composition and the phosphate adsorption characteristics of the sediment. Hydrobiologia, 252: 105–116.

    Google Scholar 

  8. De Groot, C. J. & H. L. Golterman, 1990. Sequential fractionation of sediment phosphate. Hydrobiologia 192: 143–148.

    Google Scholar 

  9. De Groot, C.J. & H. L. Golterman, 1993. On the presence of organic phosphate in some Camargue sediments: evidence for the importance of phytate. Hydrobiologia 252: 117–126.

    Google Scholar 

  10. De Jonge, V. N., M. M. Engelkes & J. F. Bakker, 1993. Bioavailability of phosphorus in sediments of the western Dutch Wadden Sea. Hydrobiologia 253: 151–163.

    Google Scholar 

  11. De Montigny, C. & Y. T. Prairie, 1993. The relative importance of biological and chemical processes in the release of phosphorus from a highly organic sediment. Hydrobiologia 253: 141–150.

    Google Scholar 

  12. Einsele, W., 1936. Ueber die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  13. Einsele, W., 1938. Ueber chemische und kolloidchemische Vorgängen in Eisen-Phosphat Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.

    Google Scholar 

  14. Einsele, W. & H. Vetter, 1938. Unterschugungen über die Entwicklung der physikalischen und chemischen Verhältnisse im Jahreszyklus in einem mässig eutrophen See (Schlwinsee bei Langenargen). Int. Revue ges. Hydrobiol. Hydrogr. 36: 285–324.

    Google Scholar 

  15. Fox, L. E., 1993. The chemistry of aquatic phosphate: inorganic processes in rivers. Hydrobiologia 254: 1–16.

    Google Scholar 

  16. Froelich, P. N., 1988. Kinetic control of dissolved phosphate in natural rivers and estuaries: A primer on the phosphate buffer mechanism. Limnol Oceanogr. 33: 649–668.

    Google Scholar 

  17. Gächter, R., J. S. Meyer & A. Mares, 1988. Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limn. Oceanol. 33: 1542–1559.

    Google Scholar 

  18. Gächter, R. & J. S. Meyer, 1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.

    Google Scholar 

  19. Golterman, H. L., 1967. Influence of the mud on the chemistry of water in relation to productivity. In: Golterman H. L. & R. S. Clymo (eds), Chemical Environment in the aquatic habitat. Proceedings of an I.B.P. Symposium, 10–16 Oct. 1966. Royal Netherlands Academy of Sciences, Amsterdam.

    Google Scholar 

  20. Golterman, H. L., 1973a. Vertical movement of phosphate in freshwater. In: Griffith, E. A., A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphate Handbook. Wiley & Sons, 718 pp.

  21. Golterman, H. L., 1975. The sediments and their importance, relative to the inflows, as a source of nutrients for the growth of algae. Paper 3, In: Symposium ‘The effects of Storage on Water Quality.’ Water Research Centre, Medmenham Laboratory, Medmenham.

    Google Scholar 

  22. Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwaters. Verh. Int. Ver. Limnol. 22: 23–59.

    Google Scholar 

  23. Golterman, H. L., 1988. The calcium- and iron bound phosphate phase diagram. Hydrobiologia 159: 149–151.

    Google Scholar 

  24. Golterman, H. L., 1991. Reflections on post-OECD eutrophication models. Hydrobiologia 218: 167–176.

    Google Scholar 

  25. Golterman, H. L., 1992. Colorimetric determination of sulphate in freshwater with a chromate reagent. Hydrobiologia 228: 111–115.

    Google Scholar 

  26. Golterman, H. L., 1994a. The labyrinth of nutrient cycles and buffers in wetlands: results based on research in the Camargue (Southern France). Hydrobiologia, in press.

  27. Golterman, H. L., 1994b. The adsorption of ortho-phosphate onto Ironhydroxide. Cyclostiled report, Station Biologique de la Tour du Valat.

  28. Golterman, H.L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for physical and chemical analysis of freshwaters, IBP Manual N° 8 (2nd edn.). Blackwell Scientific Publications, Oxford, 213 pp.

    Google Scholar 

  29. Golterman, H. L. & A. Booman, 1988. Sequential extraction of iron-phosphate and calcium- phosphate from sediments by chelating agents. Verh. Int. Ver. Limnol. 23: 904–909.

    Google Scholar 

  30. Golterman, H. L. & M. L. Meyer, 1985. The geochemistry of two hard water rivers, the Rhine and the Rhone. Part 4. The apparent solubility product of hydroxy-apatite. Hydrobiologia 126: 25–30.

    Google Scholar 

  31. Golterman, H. L., A. B. Viner & G. F. Lee., 1977. Preface. In. Golterman H. L. (ed.), Interactions between Sediments and Freshwater. Dr W. Junk Publishers, The Hague. 1–9.

    Google Scholar 

  32. Gosh, A. K., J. C. Gosh & B. Prasad, 1980. The third dissociation constant of phosphoric acid from 283.15 K to 323.15 K. J. Indian Chem. Soc. LVII: 1194–1199.

    Google Scholar 

  33. Gunatilaka, A., 1982. Phosphate adsorption kinetics of resuspended sediments in a shallow lake, Neusiedlersee, Austria. Hydrobiologia 92: 293–298.

    Article  Google Scholar 

  34. Hepher, B., 1952. The fertilization of fishponds. 1. Phosphates. Bamidgeh. 4: 131–134.

    Google Scholar 

  35. Hepher, B., 1958. On the dynamics of phosphorus added to fish ponds in Israel. Limnol. Oceanogr. 3: 84–100.

    Google Scholar 

  36. Kramer, J. R., 1964. Sea Water. Saturation with apatites and carbonates. Science, 146: 637–638.

    Google Scholar 

  37. Mesnage, V. & B. Picot, 1995. The distribution of phosphate in sediments and its relation with eutrophication of a mediterranean coastal lagoon. Hydrobiologia 297: 29–41.

    Google Scholar 

  38. Moutin, T., B. Picot, M. C. Ximenes & J. Bontoux, 1993. Seasonal variations of P compounds and their concentrations in two coastal lagoons (Hérault, France). Hydrobiologia 252: 45–59.

    Google Scholar 

  39. Mortimert, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329.

    Google Scholar 

  40. Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 30: 147–201.

    Google Scholar 

  41. Lee, G. F., 1977. In: Golterman H. L. (ed.), Interactions between Sediments and Freshwater. Dr W. Junk Publishers, The Hague: 313–317.

    Google Scholar 

  42. Lijklema, L. 1977. The role of iron in the exchange of phosphate between water and sediment. In: Golterman H. L. (ed.), Interactions between Sediments and Freshwater. Dr W. Junk Publishers, The Hague: 313–317.

    Google Scholar 

  43. Lijklema, L., 1980. Interaction of orthophosphate with Iron(III) and Aluminum Hydroxides. Envir. Sci. & Technol. 14: 537–541.

    Google Scholar 

  44. Olsen, S., 1964. Phosphate equilibrium between reduced sediments and water, laboratory experiments with radioactive phosphorus. Verh. Int. Ver. Limnol. 13: 915–922.

    Google Scholar 

  45. Stumm W. & J. J. Morgan, 1981. Aquatic chemistry, 2nd edn. Wiley-Interscience, New York, 780 pp.

    Google Scholar 

  46. Thomas, E. A., 1965. Phosphat-Elimination in der Belebtschlammanlage von Männedorf und Phosphat-Fixation in See- and Klärschlamm. Vierteljahrsschr. Naturforsch. Ges. Zurich 110: 419–434.

    Google Scholar 

  47. Twinch, A. J. & C. M. Breen, 1982. Vertical stratification in sediments from a young oligotrophic South African impoundment: implications in phosphorus cycling. Hydrobiologia 92: 395–404.

    Article  Google Scholar 

  48. Syers J. K. & D. Curtin, 1989. Inorganic reactions controlling phosphorus cycling. In: Thiessen, H. (ed.), Phosphorus Cycles in Terrestrial and Aquatic Ecosystems. Proceeding of a SCOPE Workshop, May 1988, Czemiejewo, Poland. Saskatchewan Insitute of Pedology, Saskatoon, Canada, 339 pp.

    Google Scholar 

  49. Partin, R. L., 1978. Anion adsorption by soils and soil materials. Adv. Agron. 30: 1–50.

    Google Scholar 

  50. Parfitt, R. L., J. D. Russel & V. C. Farmer, 1976. Confirmation of the surface structures of goethite (αFeOOH) and phosphated goethite by infrared spectroscopy. J. Chem. Soc. Farad. Trans. 72: 1082–1087.

    Article  Google Scholar 

  51. Remy, A., 1956. Treatise on inorganic chemistry, 1. Elsevier, Amsterdam/London. pp. 624–5 & 638. 866 pp.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

This article is dedicated to the memory of Dr Kees de Groot, who died on 21 September 1994. He was a young enthusiastic, promising scientist who will be missed by all who have known him.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Golterman, H.L. The role of the ironhydroxide-phosphate-sulphide system in the phosphate exchange between sediments and overlying water. Hydrobiologia 297, 43–54 (1995). https://doi.org/10.1007/BF00033500

Download citation

Key words

  • phosphate
  • ironhydroxide
  • sulphide
  • apatite
  • sediments