Vegetatio

, Volume 78, Issue 3, pp 125–140 | Cite as

Environmental relationships and vegetation associates of columnar cacti in the northern Sonoran Desert

  • Kathleen C. Parker
Article

Abstract

The environmental distribution, habitat segregation, and vegetation associates of the columnar cacti Carnegiea gigantea, Stenocereus thurberi, and Lophocereus schottii were examined in Organ Pipe Cactus National Monument, Arizona. Three primary environmental gradients were identified with principal components analysis of environmental data: soil texture, elevation/nutrients, and xericness (based on slope aspect and angle). Environmental influents of spatial variation in density were modeled with ordinary least squares regression analysis, and common associates were identified with two-way indicator species analysis for each cactus. Of the three cacti, Carnegiea gigantea occurred over the broadest ecological range of habitats, but was densest on coarse, granitically derived alluvial soils of flat upper bajadas and basin floors, where it was associated with Larrea tridentata, Ambrosia deltoidea, and Opuntia fulgida. Stenocereus thurberi reached its maximum densities on coarse sandy soils of steep, south-facing granitic slopes, with Encelia farinosa, Jatropha cuneata, and Opuntia bigelovii as associates. Lophocereus schottii was restricted to very coarse, granitically derived alluvial soils in the southern part of the monument, where it occurred along wash banks with Beloperone californica, Hymenoclea salsola, Acacia greggii, and Opuntia arbuscula.

Keywords

Carnegiea gigantea Classification Lophocereus schottii Plant community Plant-environment relationship Stenocereus thurberi 

Abbreviations

DCA

Detrended correspondence analysis

OPCNM

Organ Pipe Cactus National Monument

OLS

Ordinary least squares

PCA

Principal components analysis

RA

Reciprocal averaging

TWINSPAN

Two-way indicator species analysis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcorn, S. M., McGregor, S. E. & Olin, G. 1962. Pollination requirements of the organpipe cactus. Cactus Succulent J. Cactus Succulent Soc. Amer. 34: 134–138.Google Scholar
  2. Andersson, P.-A. 1988. Ordination and classification of operational geographic units in Southwest Sweden. Vegetatio 74: 95–106.Google Scholar
  3. Austin, M. P., Cunningham, R. B. & Fleming, P. M. 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.Google Scholar
  4. Birkeland, P. W. 1984. Soils and geomorphology. Oxford University Press, New York.Google Scholar
  5. Bowers, J. E. 1980. Flora of Organ Pipe Cactus National Monument. J. Arizona-Nevada Acad. Sci. 15: 1–11, 33–47.Google Scholar
  6. Bowers, M. A. 1988. Plant associations on a Sonoran Desert bajada: geographical correlates and evolutionary source pools. Vegetatio 74: 107–112.Google Scholar
  7. Bowers, M. A. & Lowe, C. H. 1986. Plant-form gradients on Sonoran Desert bajadas. Oikos 46: 284–291.Google Scholar
  8. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analysis of soils. Agron. J. 54: 464–465.Google Scholar
  9. Bray, J. H. & Maxwell, S. E. 1985. Multivariate analysis of variance. Sage University Papers, Quantitative Applications in the Social Sciences Series, No. 54. Sage Publications, Beverly Hills, CA.Google Scholar
  10. Brum, G. D. 1973. Ecology of the saguaro (Carnegiea gigantea): phenology and establishment in marginal populations. Madroño 22: 195–204.Google Scholar
  11. Bryson, R. A. & Lowry, W. P. 1955. The synoptic climatology of the Arizona summer precipitation singularity. Bull. Amer. Meteorol. Soc. 36: 329–339.Google Scholar
  12. Canfield, R. H. 1941. Application of the line intercept method in sampling range vegetation. J. Forestry 39: 388–394.Google Scholar
  13. Cannon, W. A. 1911. The root habits of desert plants. Carnegie Institute of Washington Publ. 131.Google Scholar
  14. Carleton, A. M. 1985. Synoptic and satellite aspects of the southwestern U.S. summer ‘monsoon’. J. Climatology 5: 389–402.Google Scholar
  15. Chronic, H. 1983. Roadside geology of Arizona. Montana Press Publishing Company, Missoula, MO.Google Scholar
  16. Cody, M. L. 1984. Branching patterns in columnar cacti In: Margaris, N., Arianoutsou-Faraggitaki, M. & Oechel, W. C. (eds), Being alive on land. Junk, Den Haag.Google Scholar
  17. Cody, M. L. 1986a. Structural niches in plant communities. In: Diamond, J. & Chase, T. J. (eds), Community ecology. Harper & Row, New York.Google Scholar
  18. Cody, M. L. 1986b. Distribution and morphology of columnar cacti in tropical deciduous woodland, Jalisco, Mexico. Vegetatio 66: 137–145.Google Scholar
  19. Draper, N. R. & Smith, H. 1981. Applied regression analysis, 2nd ed. Wiley, New York.Google Scholar
  20. Engelmann, G., 1852. Notes on the Cereus giganteus of southeastern California, and some other Californian Cactaceae. Amer. J. Sci. Arts. II 14: 335–339, 446.Google Scholar
  21. Ezcurra, E., Equilhua, M. & López-Portillo, J. 1987. The desert vegetation of El Pinacate, Sonora, Mexico. Vegetatio 71: 49–60.Google Scholar
  22. Felger, R. S. & Lowe, C. H. 1967. Clinal variation in the surface-volume relationship of the columnar cactus Lophocereus schottii in northwestern Mexico. Ecology 48: 530–536.Google Scholar
  23. Frank, E. C. & Lee, R. 1966. Potential solar beam jrradiation on slopes: tables for 30° to 50° latitude. U.S. Forest Service Research Paper RM-18. Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.Google Scholar
  24. Gauch Jr, H. G. 1982. Multivariate analysis in community ecology. Cambridge University Press, Cambridge, MA.Google Scholar
  25. Geiger, R. 1966. The climate near the ground. Harvard University Press, Cambridge, MA.Google Scholar
  26. Geller, G. N. & Nobel, P. S. 1986. Branching patterns of columnar cacti: influences on PAR interception and CO2 uptake. Amer. J. Bot. 73: 1193–1200.Google Scholar
  27. Geller, G. N. & Nobel, P. S. 1986. Comparative cactus architecture and PAR interception. Amer. J. Bot. 74: 998–1005.Google Scholar
  28. Gibson, A. C. & Nobel, P. S. 1986. The cactus primer. Harvard University Press, Cambridge, MA.Google Scholar
  29. Gibson, D. J. & Greig-Smith, P. 1986. Community pattern analysis: a method for quantifying community mosaic structure. Vegetatio 66: 41–47.Google Scholar
  30. Goldberg, D. E. & Turner, R. M. 1986. Vegetation change and plant demography in permanent plots in the Sonoran Desert. Ecology 67: 695–712.Google Scholar
  31. Goudie, A. 1981. Geomorphological techniques. George Allen and Unwin, Boston, MA.Google Scholar
  32. Graumlich, L. J. 1987. Precipitation variation in the Pacific Northwest (1675–1975) as reconstructed from tree rings. Ann. Assoc. Amer. Geogr. 77: 19–29.Google Scholar
  33. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.Google Scholar
  34. Hales Jr, J. E. 1974. Southwestern United States summer monsoon source — Gulf of Mexico or Pacific Ocean. J. Appl. Meteorol. 13: 331–342.Google Scholar
  35. Hastings, J. R. 1961. Precipitation and saguaro growth. Univ. Ariz. Arid Lands Colloquia 1959/1960–1960/1961: 30–38.Google Scholar
  36. Hastings, J. R. & Alcorn, S. M. 1961. Physical determinations of growth and age in the giant cactus. J. Ariz. Acad. Sci. 2: 32–39.Google Scholar
  37. Hastings, J. R. & Turner, R. M. 1965. The changing mile: an ecological study of vegetation change with time in the lower mile of an arid and semiarid region. Univ. Ariz. Press, Tucson, AZ.Google Scholar
  38. Hill, M. O. 1979a. DECORANA — a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Section of Ecology and Systematics, Cornell University, Ithaca, NY.Google Scholar
  39. Hill, M. O. 1979b. TWINSPAN — a FORTRAN program for arranging multivariate data in an ordered two-way table by classification of individuals and attributes. Section of Ecology and Systematics, Cornell University, Ithaca, NY.Google Scholar
  40. Hill, M. O. & Gauch Jr, H. G. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.Google Scholar
  41. Hotelling, H. 1933. Analysis of a complex of statistical varlables into principal components. J. Educ. Psychol. 24: 417–441, 498–520.Google Scholar
  42. Jordan, P. W. & Nobel, P. S. 1982. Height distributions of two species of cacti in relation to rainfall, seedling establishment and growth. Bot. Gaz. 143: 511–517.Google Scholar
  43. Key, L. J., Delph, L. F., Thompson, D. B. & Van Hoogenstyn, E. P. 1984. Edaphic factors and the perennial plant community of a Sonoran Desert baiada. Southw. Natur. 29: 211–222.Google Scholar
  44. Luginbuhl, R., ed. 1986. SAS system for regression. SAS Institute, Cary, NC.Google Scholar
  45. McAuliffe, J. R. 1984. Sahuaro-nurse tree associations in the Sonoran Desert: competitive effects of sahuaros. Oecologia 64: 319–321.Google Scholar
  46. McDonough, W. T. 1964. Germination responses of Carnegiea gigantea and Lemaireocereus thurberi. Ecology 45: 155–159.Google Scholar
  47. Minchin, P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.Google Scholar
  48. National Oceanic and Atmospheric Administration. 1975–1985. Climatological data: Arizona. Volumes 79–89. U.S. Dept. Commerce, Washington, D.C.Google Scholar
  49. Niering, W. A., Whittaker, R. H. & Lowe, C. H. 1963. The saguaro: a population in relation to environment. Science 142: 15–23.Google Scholar
  50. Nobel, P. S. 1980a. Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea. Bot. Gaz. 141: 188–191.Google Scholar
  51. Nobel, P. S. 1980b. Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert. Ecology 61: 1–7.Google Scholar
  52. Nobel, P. S. 1982. Low-temperature tolerance and cold hardening of cacti. Ecology 63: 1650–1656.Google Scholar
  53. Parker, K. C. 1987a. Seedcrop characteristics and minimum reproductive size of organ pipe cactus (Stenocereus thurberi) in southern Arizona. Madroño 34: 283–293.Google Scholar
  54. Parker, K. C. 1987b. Site-related demographic patterns of organ pipe cactus populations in southern Arizona. Bull. Torrey Bot. Club 114: 149–155.Google Scholar
  55. Parker, K. C. 1988a. Height structure and reproductive characteristics of senita [(Lophocereus schottii) Cactaceae] in southern Arizona. Southw. Natur. (in press).Google Scholar
  56. Parker, K. C. 1988b. Growth rates of Stenocereus thurberi and Lophocereus schottii in southern Arizona. Bot. Gaz. (in press).Google Scholar
  57. Peet, R. K. 1980. Ordination as a tool for analyzing complex data sets. Vegetatio 42: 171–174.Google Scholar
  58. Phillips, D. L. & MacMahon, J. A. 1978. Gradient analysis of a Sonoran Desert bajada. Southw. Natur. 23: 669–680.Google Scholar
  59. Reynolds, R. J. & Aldous, K. 1970. Atomic absorption spectroscopy. Griffin, London.Google Scholar
  60. Sellers, W. D. & Hill, R. H., eds. 1974. Arizona climate 1931–1972. 2nd ed. Univ. Ariz. Press, Tucson, AZ.Google Scholar
  61. Shreve, F. 1910. The rate of establishment of the giant cactus. Plant World 13: 235–240.Google Scholar
  62. Shreve, F. 1931. Physical conditions in sun and shade. Ecology 12: 96–104.Google Scholar
  63. Shreve, F. 1964. Vegetation of the Sonoran Desert. Vol. 1, Part 1, in Shreve, F. & Wiggins, I. L., Vegetation and flora of the Sonoran Desert, 2 volumes. Stanford University Press, Stanford, CA.Google Scholar
  64. Smith, S. D., Didden-Zopfy, B. & Nobel, P. S. 1984. High-temperature responses of North American cacti. Ecology 65: 643–651.Google Scholar
  65. Soil Conservation Service. 1972. Soil survey, Organ Pipe Cactus National Monument, an interim report. U.S. Dept. Agriculture, Phoenix, AZ.Google Scholar
  66. Steenbergh, W. F. & Lowe, C. H. 1969. Critical factors during the first years of life of the saguaro (Cereus giganteus) at Saguaro National Monument, Arizona. Ecology 50: 825–834.Google Scholar
  67. Steenbergh, W. F. & Lowe, C. H. 1977. Ecology of the saguaro: II. reproduction, germination, establishment, growth, and survival of the young plant, National Park Service Sci. Monogr. Ser. No. 8.Google Scholar
  68. Steenbergh, W. F. & Lowe, C. H. 1983. Ecology of the saguaro: III. growth and demography. National Park Service Sci. Monogr. Ser. 17.Google Scholar
  69. Turner, R. M., Alcorn, S. M., Olin, G. & Booth, J. A. 1966. The influence of shade, soil, and water on saguaro seedling establishment. Bot. Gaz. 127: 95–102.Google Scholar
  70. Turner, R. M., Alcorn, S. M. & Olin, G. 1969. Mortality of transplanted saguaro seedlings. Ecology 50: 835–844.Google Scholar
  71. Turner, R. M. & Brown, D. E. 1982. Sonoran desertscrub. Desert Plants 4: 180–222.Google Scholar
  72. Wartenberg, D., Ferson, S. & Rohlf, F. J. 1987. Putting things in order: a critique of detrended correspondence analysis. Amer. Nat. 129: 434–448.Google Scholar
  73. Weather Bureau. 1973–1974. Climatological data for the United States by sections: annual summary. Vols 77–78. U.S. Dept. Commerce, Washington, D.C.Google Scholar
  74. Weisberg, S. 1980. Applied linear regression. Wiley, New York.Google Scholar
  75. Whittaker, R. H. & Niering, W. A. 1965. Vegetation of the Santa Catalina Mountains, Arizona: a gradient analysis of the south slope. Ecology 46: 429–452.Google Scholar
  76. Yang, T. W. & Lowe Jr, C. H. 1956. Correlation of major vegetation climaxes with soil characteristics in the Sonoran Desert. Science 123: 542.Google Scholar
  77. Yeaton, R. I. & Cody, M. L. 1979. The distribution of cacti along environmental gradients in the Sonoran and Mojave Deserts. J. Ecol. 67: 529–541.Google Scholar
  78. Zar, J. H. 1984. Biostatistical analysis, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Kathleen C. Parker
    • 1
  1. 1.Department of GeographyUniversity of GeorgiaAthensUSA

Personalised recommendations