Skip to main content
Log in

Plane-stress crack-tip fields for perfectly plastic orthotropic materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Plane stress mode I crack-tip fields for perfectly plastic orthotropic materials are studied. Plastic orthotropy is described by Hill's quadratic yield function. The construction of crack-tip fields is based on the general crack-tip field analysis for elastic perfectly plastic materials given by Rice [1] and guided by the corresponding low-hardening power-law solutions. Two very different types of plane-stress crack-tip fields emerge as plastic orthotropy is varied. The first one consists of a centered fan sector in front of the crack tip and two neighboring constant stress sectors. The second one consists of a constant stress sector in front of the crack tip, a constant stress sector bordering the crack face, and a centered fan sector between the two constant stress sectors. All the perfectly plastic crack-tip solutons are verified by the corresponding low-hardening power-law solutions. General trends of crack-tip stress solutions as functions of plastic orthotropy and implications of these solutions to the design of ductile composite materials are discussed.

Résumé

On étudie les champs de contraintes planes de mode I à l'extrémité d'une fissure, dans les matériaux orthotropiques parfaitement plastique. L'orthotropie plastique est décrite par la fonction quadratique de plasticité de Hill. On base les constructions des champs de constraintes sur l'analyse générale des constraintes à l'extrémité d'une fissure fournie par Rice pour les matériaux élastiques parfaitement plastiques, que l'on règle par les lois paraboliques caractérisant un faible écrouissage. Lorsque l'on modifie l'orthotropie plastique, il apparaît deux types de champs de contraintes à l'extrémité de la fissure très différents. Le premier comporte un secteur en éventail centré sur le front de fissure, et deux secteurs voisins à contraintes constantes. Le second consiste en une secteur à contrainte au bord de la surface de la fissure, et un secteur en éventail centré sur les deux secteurs à contraintes constantes. Toutes les solutions relatives à une extrémité de fissures parfaitement plastique sont vérifiées par les fonctions paraboliques d'écrouissage faible correspondantes. On discute des tendances générales que suivent les solutions pour les contraintes en extrémité de fissure selon l'orthrotropie plastique, et des implications que comportent ces solutions dans la conception de matériaux composites ductiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Rice, in Mechanics of Solids: The R. Hill 60th Anniversary Volume, H.G. Hopkins and M.J. Sewell (eds.), Pergamon Press, Oxford (1982) 539–562.

    Google Scholar 

  2. R. Hill, The Mathematical Theory of Plasticity, Oxford University Press, London (1950).

    Google Scholar 

  3. R. Hill, Proceedings Royal Society of London, Series A 193 (1948) 281–291.

    Google Scholar 

  4. R. Hill, Mathematical Proceedings Cambridge Philosophical Society 85 (1979) 179–191.

    Google Scholar 

  5. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 13–31.

    Article  Google Scholar 

  6. J.W. Hutchinson, Journal of the Mechanics and Physics of Solids 16 (1968) 337–347.

    Article  Google Scholar 

  7. J.R. Rice, Transaction of the ASME, Journal of Applied Mechanics 35 (1968) 379–386.

    Google Scholar 

  8. J.R. Rice and G.F. Rosengren, Journal of the Mechanics and Physics of Solids 16 (1968) 1–12.

    Article  Google Scholar 

  9. C.F. Shih, “Elastic-Plastic Analysis of Combined Mode Crack Problems,” Ph.D. thesis, Harvard University, Cambridge, Mass. (1973).

  10. C.F. Shih, in Fracture Analysis, ASTM STP 560 (1974) 187–210.

  11. C.F. Shih, “Tables of Hutchinson-Rice-Rosengren Singular Field Quantities,” MRL E-147, Material Research Laboratory, Brown University (1983).

  12. S. Nemat-Nasser and M. Obata, Mechanics of Materials 3 (1984) 235–247.

    Article  Google Scholar 

  13. K. Hayashi, Journal of the Mechanics and Physics of Solids 27 (1979) 163–174.

    Article  Google Scholar 

  14. J. Pan and C.F. Shih, Mechanics of Materials 5 (1986) 299–316.

    Article  Google Scholar 

  15. J. Pan and C.F. Shih, International Journal of Fracture 37 (1988) 171–195.

    Google Scholar 

  16. J. Pan, Journal of the Mechanics and Physics of Solids 34 (1986) 617–635.

    Article  Google Scholar 

  17. J.R. Rice, Journal of the Mechanics and Physics of Solids 21 (1973) 63–74.

    Article  Google Scholar 

  18. J.R. Rice, in Fracture, Vol. 2, H. Liebowitz (ed.), Academic Press, New York (1968) 191–311.

    Google Scholar 

  19. N. Levy, P.V. Marcal, W.J. Ostergren, and J.R. Rice, International Journal of Fracture Mechanics 7 (1971) 143–156.

    Article  Google Scholar 

  20. J.R. Rice and D.M. Tracey, in Numerical and Computer Methods in Structural Mechanics, S.J. Fenves et al. (eds.), Academic Press, New York (1973).

    Google Scholar 

  21. D.M. Tracey, Journal of Engineering Materials and Technology 98 (1976) 146–151.

    Google Scholar 

  22. D.M. Parks, “Some Problems in Elastic-Plastic Finite Element Analysis of Cracks,” Ph.D. thesis, Brown University, Providence, RI (1975).

  23. J.R. Rice, Mechanics of Materials 3 (1984) 55–80.

    Article  Google Scholar 

  24. J.R. Rice and R. Nikolic, Journal of the Mechanics and Physics of Solids 33 (1985) 595–622.

    Article  Google Scholar 

  25. J.R. Rice, “Tensile Crack Tip Fields in Elastic-Ideally Plastic Crystals,” Report No. Mech-106, Division of Applied Sciences, Harvard University (July 1987) to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, J. Plane-stress crack-tip fields for perfectly plastic orthotropic materials. Int J Fract 38, 103–122 (1988). https://doi.org/10.1007/BF00033001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00033001

Keywords

Navigation