Skip to main content
Log in

Primary production in Rattlesnake Springs, a cold desert spring-stream

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Primary productivity and respiration were measured in Rattlesnake Springs, Washington, using the upstream-downstream diel pH-CO2 curve and harvest methods.

Daily Pg and Pn rates averaged 8.7 and 0.9, 0.6 and 0.3, and 9.3 and 1.2 g C m−2 d−1 for periphyton, watercress, and total community, respectively. Average photosynthetic efficiencies (%, P n Lt−1) were approximately 0.22 and 0.07 for periphyton and watercress, respectively. Annual community Pg was 2 700 g C m−2 a−1 and was highest for periphyton (2 526 g C m−2 a−1). Periphyton Pn (356 g C m−2 a−1) exceeded that of watercress (87 g C m−2 a−1). Community R was 2 257 g C m−2 a−1, and was highest for periphyton (2 170 g C m2 a−1).

Desert streams appear to be enigmas in terms of their relationship between autotrophy and heterotrophy and their ability to be net importers or exporters of organic matter. The fact that they can be autotrophic and net importers of organic matter is probably related to the characteristic flash-flooding of desert streams, and emphasizes the necessity of examining these systems over more than a single annual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Beyers, R. J. & H. T. Odum, 1959. The use of carbon dioxide to construct pH curves for the measurement of productivity. Limnol. Oceanogr. 4: 499–502.

    Google Scholar 

  • Beyers, R. J., J. L. Larimer, H. T. Odum, R. B. Parker & N. E. Armstrong, 1963. Directions for the determination of changes in carbon dioxide concentration from changes in pH. Publ. Inst. mar. Sci. Texas 9: 454–489.

    Google Scholar 

  • Bott, T. L., J. T. Brock, C. E. Cushing, S. V. Gregory, D. King & R. C. Petersen, 1978. A comparison of methods for measuring primary productivity and community respiration in streams. Hydrobiologia 60: 3–12.

    Article  Google Scholar 

  • Busch, D. E. & S. G. Fisher, 1981. Metabolism of a desert stream. Freshwat. Biol. 11: 301–307.

    Google Scholar 

  • Cummins, K. W., J. R. Sedell, F. J. Swanson, G. W. Minshall, S. G. Fisher, C. E. Cushing, R. C. Petersen & R. L. Vannote, 1983. Problems in evaluating organic matter budgets for stream ecosystems. In J. R. Barnes & G. W. Minshall (eds.), The Testing of General Ecological Theories in Stream Ecosystems. Plenum Press, N. Y.: 299–354.

    Google Scholar 

  • Cushing, C. E., C. D. McIntire, J. R. Sedell, K. W. Cummins, G. W. Minshall, R. C. Petersen & R. L. Vannote, 1980. Comparative study of physical-chemical variables of streams using multivariate analyses. Arch. Hydrobiol. 89: 343–352.

    Google Scholar 

  • Cushing C. E. & E. G. Wolf, 1982. Organic energy budget of Rattlesnake Springs, Washington. Am. Midl. Nat. 107: 404–407.

    Google Scholar 

  • Duffer, W. R. & T. C. Dorris, 1966. Primary productivity in a southern Great Plains stream. Limnol. Oceanogr. 11: 143–151.

    Google Scholar 

  • Gelroth, J. V. & G. R. Marzolf, 1978. Primary production and leaf-litter decomposition in natural and channelized portions of a Kansas stream. Am. Midl. Nat. 99: 238–243.

    Google Scholar 

  • Gray, L. J. & S. G. Fisher, 1981. Postflood recolonization pathways of macroinvertebrates in a lowland Sonoran desert stream. Am. Midl. Nat. 106: 249–257.

    Google Scholar 

  • Hornuff, L. E., 1957. A survey of four Oklahoma streams with reference to production. Okla. Fish. Res. Lab. Rep. 62, Norman, Okla., 22 pp.

  • Haynes, H. B. N., 1969. The enrichment of streams. In Eutrophication: Causes, Consequences, Correctives. Natl. Acad. Sci., Wash. D. C.: 188–196.

    Google Scholar 

  • Knight, A., R. C. Ball & F. F. Hooper, 1962. Some estimates of primary production rates in Michigan ponds. Mich. Acad. Sci. 42: 219–233.

    Google Scholar 

  • Lewis, M. A. & S. D. Gerking, 1979. Primary productivity in a polluted intermittent desert stream. Am. Midl. Nat. 102: 172–174.

    Google Scholar 

  • Lippert, B. E. & C. E. Cushing, 1973. Taxonomy of Rattlesnake Springs (ALE) algae. In Pacific Northwest Laboratory Annual Report for 1972 to the USAEC Div. of Biomedical and Environmental Research, Vol. I, Life Sciences, Part 2 Ecological Sciences, BNWL-1750: 6.15–6.16.

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. Bio-Science 28: 767–771.

    Google Scholar 

  • Odum, E. P., 1959. Fundamentals of Ecology. W. B. Saunders Co., Philad., 546 pp.

    Google Scholar 

  • Odum, H. T., 1956. Primary production in flowing waters. Limnol. Oceanogr. 1: 102–117.

    Google Scholar 

  • Owens, M. & R. W. Edwards, 1961. The effects of plants on river conditions, 2. Further crop studies and estimates of net productivity of macrophytes in a chalk stream. J. Ecol. 49: 119–126.

    Google Scholar 

  • Park, K., D. W. Hood & H. T. Odum, 1968. Diurnal pH variations in Texas bays and its application to primary production estimates. Publ. Inst. mar. Sci. Texas 5: 47–64.

    Google Scholar 

  • Pennak, R. W., 1971. Toward a classification of lotic habitats. Hydrobiologia 38: 321–334.

    Article  Google Scholar 

  • Prophet, C. W. & J. D. Ransom, 1974. Summer stream metabolism values for Cedar Creek, Kansas. S. West. Nat. 19: 305–308.

    Google Scholar 

  • Rickard, W. H. & C. E. Cushing, 1982. Recovery of streamside woody vegetation after exclusion of livestock grazing. J. Range. Mgmt. 35: 360–361.

    Google Scholar 

  • Ruttner, F., 1963. Fundamentals of Limnology. University of Toronto Press, Toronto. 295 pp.

    Google Scholar 

  • Strahler A. H., 1957. Quantitative analysis of watershed geomorphology. Am. Geophys. Un. Trans. 38: 913–920.

    Google Scholar 

  • Strickland, J. D. H. 1960. Measuring the production of marine phytoplankton. Fish. Res. Bd Can. Bull. 122, 172 pp.

    Google Scholar 

  • Vannote, R. L. & R. C. Ball, 1972, Community productivity and energy flow in an enriched warm-water stream. Tech. Rep. 27, Inst. Wat. Res. Mich. St. Univ., 155 pp.

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell \& C. E. Cushing, 1980. The river continuum concept. Can. J. Fish. aquat. Sci. 37: 130–137.

    Google Scholar 

  • Verduin, J., 1960. Phytoplankton communities of western Lake Erie and the CO2 and O2 changes associated with them. Limnol. Oceanogr. 5: 372–380.

    Google Scholar 

  • Westlake, D. F., 1969. Primary production rates from changes in biomass — macrophytes; Units and compatibility. In R. A. Vollenweider (ed.), A Manual on Methods for Measuring Primary Production in Aquatic Environments, IBP Handbook 12: 25–32, 113–118.

  • Wolf, E. G., C. E. Cushing & F. W. Rabe, 1971. An automated system for multiple recording of diurnal pH. Limnol. Oceanogr. 16: 577–580.

    Google Scholar 

  • Wolf, E. G. & R. J. Olson, 1974. A computer program used to estimate primary productivity from pH and carbon dioxide data employing the upstream-downstream method. BNWL-1828, Battelle-Pacific NW. Lab., 23 pp.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cushing, C.E., Wolf, E.G. Primary production in Rattlesnake Springs, a cold desert spring-stream. Hydrobiologia 114, 229–236 (1984). https://doi.org/10.1007/BF00031874

Download citation

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031874

Keywords

Navigation