Skip to main content
Log in

Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

A model simulating the regeneration, growth and death of trees and the consequent carbon and nitrogen dynamics of the forest ecosystem was applied to determine the effect of expected temperature rise on tree species composition and the accumulation of organic matter in the boreal forest ecosystem in Finland (between latitudes 60°–70° N). In the southern and middle boreal zones a temperature rise of 2–3° C (temperature for 2 x CO2) over a period of one hundred years increased the competitive capacity of Scots pine (Pinus sylvestris) and birch species (Betula pendula and B. pubescens), and slowed down the invasion by Norway spruce (Picea abies). In the northern boreal zone a corresponding rise in temperature promoted the invasion of sites by Norway spruce. The accumulation of organic matter was promoted only slightly compared to that taking place in the current climatic conditions.

A further doubling of temperature (temperature for 4 x CO2) over an additional period of two hundred years led to the replacement of coniferous stands with deciduous onesin the southern and middle boreal zones. In the northern boreal zone an admixture of coniferous and deciduous species replaced pure coniferous stands with the latter taking over sites formerly classified as tundra woodland. In the southern and middle boreal zones the replacement of coniferous species induced a substantial decrease in the amount of organic matter; this returned to its former level following the establishment of deciduous species. In the northern boreal zone there was no major change in the amount of organic matter such as occurred in the case of the tundra woodland where the amount of organic matter accumulated was nearly as high as in the northern boreal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D. & Melillo, J. M. 1982. Fornite: a computer model of organic matter and nitrogen dynamics in forest ecosystem. University of Wisconsin. Research Bulletin R 3130: 1–49.

    Google Scholar 

  • Axelsson, B. 1984. Increasing forest productivity and value by manipulating nutrient availability. In: Forest potentials, productivity and value. Weyerhaeuser Science Symposium 4: 5–37.

  • Bach, W. 1988. Development of climatic scenarios: A. From general circulation models. In: Parry, M. L., Carter, T. R. & Konijn, N. T. (eds.), The impacts of climatic variations on agriculture. Volume 1: Assessment in cool temperate and cold regions. Kluwer Academic Publishers, Dordrecht. pp. 125–157.

    Google Scholar 

  • Berg, B., Jansson, P.-E. & McClaugherty, C. 1990. Climate variability and litter decomposition, results from a transect study. In: Boer, M. M. & DeGroot, R. S. (eds.). Landscape-ecological impact of climate change. IOS Press. Amsterdam. pp. 250–273.

    Google Scholar 

  • Birks, H. J. B. 1990. Changes in vegetation and climate during the Holocene of Europe. In: Boer, M. M. & DeGroot, R. S. (eds.). Landscape-ecological impact of climate change. IOS Press, Amsterdam. pp. 133–158.

    Google Scholar 

  • Bonan, G. B. & Korzuyhin, M. 1989. Simulation of moss and tree dynamics in the boreal forests of interior Alaska. Vegetatio 84: 31–44.

    Google Scholar 

  • Botkin, D. B., Janak, J. F. & Wallis, J. R. 1972. Some ecological consequences of a computer model of forest growth. Journal of Ecology 60: 849–872.

    Google Scholar 

  • Cajander, E. K. 1934. Über den Höhenzuwachs der Fichtenpflanzenbestände nach der Befreiung. Communicationes Instituti Forestalis Fenniae 19 (5): 1–59.

    Google Scholar 

  • Cannel, M. R. G., Grace, J. & Booth, A. 1989. Possible impacts of climatic warming on trees and forests in the United Kingdom: a review. Forestry 62: 337–364.

    Google Scholar 

  • Dahl, E. 1990. Probable effects of climate change due to the greenhouse effect on plant productivity and survival in North Europe. Norsk Institutt for Naturforskning. Notat 004: 7–18.

    Google Scholar 

  • El-Bayoumi, M. A., Shugart, H. H. & Wein, R. W. 1984. Modelling succession of eastern Canadian mixedwood forests. Ecological Modelling 21: 175–198.

    Google Scholar 

  • Emanuel, W. R., Shugart, H. H. & Stevenson, M. P. 1985. Climatic change and broad-scale distribution of terrestrial ecosystems complexes. Climate Change 7: 29–43.

    Google Scholar 

  • Gustavsen, H. & Lipas, E. 1975. Effect of nitrogen dosage on fertilizer response. Folia Forestalia 246: 1–20.

    Google Scholar 

  • Hakkila, P. 1971. Coniferous branches as a raw material source. A sub-project of the joint Nordic research programme for utilization of logging residues. Communicationes Instituti Forestalis Fenniae 75 (1): 1–60.

    Google Scholar 

  • Heikinheimo, O. 1948. Results of experiments on the geographical races of spruce and pine. Communicationes Instituti Forestalis Fenniae 37 (2): 1–44.

    Google Scholar 

  • Henttonen, H., Kanninen, M., Nygren, M. & Ojansuu, R. 1986. The maturation of Scots pine seeds in relation to temperature climate in northern Finland. Scandinavian Journal of Forest Research 1: 234–249.

    Google Scholar 

  • Hulme, H., Wigley, T. M. L. & Jones, P. D. 1990. Limitations or regional climate scenarios for impact analysis. In: Boer, M. M. & DeGroot, R. S. (eds.), Landscape-ecological impact of climate change. IOS Press. Amsterdam. pp. 111–129.

    Google Scholar 

  • Hustisch, I. 1948. The Scots pine in northernmost Finland and its dependence on the climate in the last decades. Acta Botanici Fennici 42: 1–75.

    Google Scholar 

  • Ilvessalo, Y. 1920. Ertragstafeln für Kiefern-, Fichten- and Birkenbestände in der Sudhälfte von Finnland. Acta Forestalia Fennica 15: 1–94.

    Google Scholar 

  • Ilvessalo, Y. 1938. Growth of natural normal stands in Central North Finland. Communicationes Instituti Forestali Fenniae 47 (4): 1–168.

    Google Scholar 

  • Ilvessalo, Y. 1970. Natural development and yield capacity of forest stands in mineral soils in northern Lapland. Acta Forestalia Fennica 108: 1–43.

    Google Scholar 

  • Intergovernmental Panel on Climate Change. 1990. Climate Change. The IPCC Impact Assessment. Australian Government Publishing Service. Canberra.

    Google Scholar 

  • Jonsson, S. 1978. Resultat från en tioarig försökserie med hög kvävegivor. Institut för Skogsförbättring. Årsbok 1977.

    Google Scholar 

  • Junttila, O. 1986. Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. Tree Physiology 1: 185–192.

    Google Scholar 

  • Kalela, E. K. 1936. Untersuchungen über die Entwicklungen der Fichten-Weisserlen-Mischbestände in Ostfinnland. Acta Forestalia Fennica 44 (2): 1–198.

    Google Scholar 

  • Kauppi, P. & Posch, M. 1985. Sensitivity of boreal forests to possible climatic warming. Climatic Change 7: 45–54.

    Google Scholar 

  • Kellomäki, S., Hänninen, H. & Kolström, T. 1988. Model computation on the impacts of the climatic change on the productivity and silvicultural management of the forest ecosystem. Silva Fennica 22: 293–305.

    Google Scholar 

  • Kellomäki, S. & Väisänen, H. 1991. Application of a gap model for the simulation of forest ground vegetation in boreal conditions. Forest Ecology and Management 42: 35–48.

    Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U. & Pajari, B. 1991. A simulation model for the succession of boreal forest ecosystem. Silva Fennica (in print).

  • Kercher, J. R. & Axelrod, M. C. 1984a. Analysis of Silva: a model for forecasting the effects of SO2 pollution and fire on western coniferous forests. Ecological Modelling 23: 164–184.

    Google Scholar 

  • Kercher, J. R. & Axelrod, M. C. 1984b. A process model of fire ecology and succession in mixed-conifer forest. Ecology 65: 1725–1742.

    Google Scholar 

  • Kettunen, L., Mukula, J., Pohjonen, V., Rantanen, O. & Varjo, U. 1987. The effect of climatic variations on agriculture in Finland. In: Perry, M. L., Carter, T. R. & Konijn, N. T. (eds.) The impact of climatic variations on agriculture. Vol. 1. Assessment in cool temperate and cold regions. International Institute for Applied Systems Analysis. 90 pp.

  • Kienast, F. 1987. Forece — A forest succession model for southern central Europe. Oak Ridge National Laboratory. Environmental Science Division. Publ. 2989: 1–73.

    Google Scholar 

  • Kienast, F. & Kräuchi, N. 1991. Simulated successional characteristics of managed and unmanaged low-elevation forests in central Europe. Forest Ecology and Management 42: 49–62.

    Google Scholar 

  • Koivisto, P. 1959. Growth and yield tables. Communicationes Instituti Forestalis Fenniae 51 (8): 1–49.

    Google Scholar 

  • Koivisto, P. 1971. Reginality of forest growth in Finland. Communicationes Instituti Forestalis Fenniae 71 (2): 1–76.

    Google Scholar 

  • Koski, V. & Tallqvist, R. 1978. Results on long-time measurements of the quality of flowering and seed crop of forest trees. Folia Forestalia 364–60.

  • Kuusela, K. 1990. The dynamics of boreal coniferous forests. Sitra. Helsinki. 172 pp.

    Google Scholar 

  • Kuusela, K. & Salminen, S. 1991. Forest resources in Finland in 1977–1984 and their development in 1952–1980. Acta Forestalia Fennica 220: 1–84.

    Google Scholar 

  • Leemans, R. 1991. Sensitivity analysis of a forest succession model. Ecological Modelling 53: 247–262.

    Google Scholar 

  • Leemans, R. & Prentice, I. C. 1987. Description and simulation of tree-layer composition and size distributions in primaeval Picea-Pinus forest. Vegetatio 69: 147–156.

    Google Scholar 

  • Leemans, R. & Prentice, C. I. 1989. Forska, a general forest succession model. Meddelanden från Växtbiologiska Institutionen, Uppsala, 1989 (2): 1–45.

    Google Scholar 

  • Malm, D., Möller, G. & Nömmik, H. 1974. Gödlingseffektens samband med växtnäringsinnehåll i mark och barr. Institut för Skogsförbättring. Årsbok 1973.

    Google Scholar 

  • Mikola, P. 1952. On the recent development of coniferous forests in the timberline region of northern Finland. Communicationes Instituti Forestalis Fenniae 40 (2): 1–35.

    Google Scholar 

  • Mitchell, J. F. B., Manabe, S., Meleshko, V. & Tokioka, T. 1990. Equilibrium climate change — and its implications for the future. In: J. T.Houghton, J. T., G. J.Jenkins & J. J.Ephraums (eds.), Climate change. Cambridge University Press. Cambridge. pp. 131–175.

    Google Scholar 

  • Oker-Blom, P. & Kellomäki, S. 1982. Theoretical computations on the role of crown shape in the absorption of light by forest trees. Mathematical Bioscience 59: 291–311.

    Google Scholar 

  • Overpeck, J. T., Rind, D. & Goldberg, R. 1990. Climate-induced changes in forest disturbance and vegetation. Nature 343: 51–53.

    Google Scholar 

  • Pastor, J. & Post, W. M. 1985. Development of a linked forest productivity-soil process model. ORNL/TM-9519. Oak Ridge National Laboratory. Oak Ridge, Tennessee. 168 pp.

    Google Scholar 

  • Pastor, J. & Post, W. M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2: 3–27.

    Google Scholar 

  • Pastor, J., Post, W. M. 1988. Response of northern forests to CO2-induced climate change. Nature 334: 55–58.

    Google Scholar 

  • Prentice, C. & Helmisaari, H. 1991. Silvics of north European trees: compilation, comparison and implications for forest succession modelling. Forest Ecology and Management 42: 79–93.

    Google Scholar 

  • Prentice, I. C. & Leemans, R. 1990. Pattern and process and the dynamics of forest structure: a simulation approach. Journal of Ecology 78: 340–355.

    Google Scholar 

  • Raulo, J. & Koski, V. 1977. Growth of Betula pendula Roth progenies in southern and central Finland. Communicationes Instituti Forestalis Fenniae 90 (5): 1–38.

    Google Scholar 

  • Sakai, A. & Larcher, W. 1987. Frost survival of plants. Springer-Verlag. Berlin. 321 pp.

    Google Scholar 

  • Sernander, R. 1936. Granskär och Fiby urskog. En studie över stormluckornas och markbuskamas betydelse i den svenska granskogens regeneration. Acta Phytographica Suecica 8: 1–232.

    Google Scholar 

  • Shugart, H. H. 1984. A theory of forest dynamics. The ecological implications of forest succession models. Springer-Verlag. New york. 277 p.

    Google Scholar 

  • Shugart, H. H. & West, D. C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. Journal of Environmental Management 5: 161–179.

    Google Scholar 

  • Shugart, H. H. & West, D. C. 1979. Size and pattern in simulated forest stands. Forest Science 25: 120–122.

    Google Scholar 

  • Silmu Programme. 1991. Climatic scenarios for impact studies in Finland. Document 1: Preliminary scenarios. Unpublished document in the Academy of Finland, Helsinki, Finland. 7 p.

  • Sirén, G. 1955. The development of spruce forest on raw humus sites in northern Finland and its ecology. Acta Forestalia Fennica 62: 1–408.

    Google Scholar 

  • Solomon, A. M. 1986. Transient response of forest to CO2-induced climate change: simulation modeling experiments in eastern North America. Oecologia (Berlin) 68: 567–579.

    Google Scholar 

  • Solomon, A. M. & Leemans, R. 1990. Climatic change and landscape ecological response: issues and analysis. In: Boer, M. M. & DeGroot, R. S. (eds.). Landscapeecological impact of climate change. IOS Press. Amsterdam. pp. 293–316.

    Google Scholar 

  • Tamm, C. O. 1961. Nutrient uptake and growth after forest fertilization in Sweden. In: Proceedings of VII. International Congress on Soil Science, Madison, USA. pp. 347–354.

  • Tamm, C. O. 1991. Nitrogen in terrestrial ecosystems. Springer-Verlag. Berlin. 115 p.

    Google Scholar 

  • Tikka, P. S. 1954. Structure and quality of aspen stands I. Structure. Communicationes Instituti Forestalis Fenniae 44 (1): 1–33.

    Google Scholar 

  • Tilman, D. 1988. Plant strategies and the dynamics and structure of plant communities. Princeton university Press. Princeton. 360 p.

    Google Scholar 

  • Thornthwaite, C. W. & Mather, J. R. 1957. Instructions and tables for computing potential evapotranspiration and the water balance. Publications in Climatology 10: 183–311.

    Google Scholar 

  • Viro, P. J. 1969. Prescribed burning in forestry. Communicationes Instituti Forestalis Fenniae 67 (7): 1–49.

    Google Scholar 

  • Viro, P. J. 1974. Fertilization of birch. Communicationes Instituti Forestalis Fenniae 81 (4): 1–38.

    Google Scholar 

  • Wang, Y. P. & Jarvis, P. G. 1990. Influence of crown structural properties on PAR absorption, photosynthesis, and transpiration in Sitka spruce: application of a model (MAESTRO). Tree Physiology 7: 297–316.

    Google Scholar 

  • Watt, A. S. 1947. Pattern and process in the plant community. Journal of Ecology 35: 1–22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellomäki, S., Kolström, M. Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions. Vegetatio 102, 47–68 (1992). https://doi.org/10.1007/BF00031703

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031703

Keywords

Navigation