Advertisement

Vegetatio

, Volume 98, Issue 1, pp 43–58 | Cite as

Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR

III. Comparison of the multielement budget with a forest ecosystem in Germany—aspects of rejection, indication and accumulation of chemical elements
  • B. Markert
  • W. Wtorova
Article

Abstract

About 50 naturally occurring chemical elements were quantitatively determined by AAS, ICP/AES, ICP/MS and INAA in the main vegetation cover of the Forest Biosphere Reserve near Kalinin, USSR. The lichen Hypogymna physodes, which was studied and compared with other plant species, accumulates the elements Al, As, Br, Ce, Co, Dy, Eu, Fe, La, Lu, Pb, Pr, Sb, Sc, Sm, Th, Tm, V, Zn, and Zr. At the same time, a depletion of the alkaline elements Na, K, Rb, and Cs and the alkaline earth elements Mg and Ca is to be observed. Within the moss cover certain heavy metals are also accumulated by Polytrichum commune and the various Sphagnum species. As in Hypogymna physodes there is also a pronounced depletion of the alkaline earth metals Mg and Ca, but contrary to Hypogymna physodes there is a simultaneous accumulation of the alkaline metals K and Rb in Polytrichum commune and additionally of Na in the Sphagnum species. This is in agreement with studies showing different behaviour for the element potassium in Polytrichum formosum in the course of several vegetation periods. Potassium accumulation was found at the beginning of the vegetation period contrary to the dilution effect due to biomass supply. The depletion of Mg and Ca in all accumulator plants seems to be a direct consequence of heavy metal concentration since this phenomenon occurs irrespective of the site, as was shown by a comparison with data from a German forest ecosystem (Grasmoor near Osnabrück). Clear bioindication behaviour of Polytrichum commune, the various Sphagnum mosses and Hypogymna physodes was found for the elements Mn, Ni, Sn, Th, Cr, Mo, and S since the same accumulation and depletion behaviour was observed for all three plants as a function of site. These plant species could thus be used as bioindication cadasters in the sense of ARNDT. The higher shrub plants examined (Vaccinium vitis-idaea and Vaccinium myrtillus) show the already known accumulation of the elements Ba and Mn (up to 4000 mg/kg of Mn for Vaccinium myrtillus). In general the concentration ranges for many elements are more restricted in higher plants.

Keywords

Multi element analysis Accumulation Rejection Indication Element concentration cadasters Ecosystem analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano, D. C. 1986. Trace elements in the terrestrial environment. Springer Verlag, New York, 533 pp.Google Scholar
  2. Arndt, U., Nobel, W. & Schweitzer, B. 1987. Bioindikatoren, Möglichkeiten. Grenzen und neue Erkenntnisse, Verlag Eugen Ulmer, Stuttgart, 388 pp.Google Scholar
  3. Bowen, H. J. M. 1979. Environmental chemistry of the elements. Academic Press, London, 333 pp.Google Scholar
  4. Bundesministerium für Forschung und Technologie (ed.) 1988. Umweltprobenbank, Springer Verlag, Berlin, Heidelberg, New York, 158 pp.Google Scholar
  5. Duvigneaud, P. & Denaeyer-De Smet, S. 1968. Biomass, productivity and mineral cycling in deciduous mixed forests in Belgium. In: H. E. Young (ed.) Symposium on primary productivity and mineral cycling in natural ecosystems, Univ. Maine Press, Orono, 167–196.Google Scholar
  6. Duvigneaud, P. & Denaeyer-De Smet, S. 1973. Biological cycling of minerals in temperate deciduous forests. In: Reichle, D. E. (Hrsg.) Analysis of temperate forest ecosystems, Ecological Studies 1, Springer Verlag, Berlin, Heidelberg, New York, 199–225.Google Scholar
  7. Ellenberg, H., Mayer, R. & Schauermann, J. 1986. Ökosystemforschung, Ergebnisse des Solling Projektes, Eugen Ulmer Verlag, Stuttgart. 506 pp.Google Scholar
  8. Erdtmann, G., Petri, H., Kayser, B. & Küppers, G. 1988. Absolute neutron activation analysis of materials using Gent ko-factors, J. Trace and Microprobe Techniques 6: 337–370.Google Scholar
  9. Ernst, W. H. O. & Joosse Van Damme, E. N. G. 1983. Umweltbelastung durch Mineralstoffe, Gustav Fischer Verlag, Stuttgart, 234 pp.Google Scholar
  10. Fortescue, J. A. C. 1980. Environmental Geochemistry, Springer Verlag, Berlin, Heidelberg, New York, 347 pp.Google Scholar
  11. Freedman, B. 1989. Environmental ecology, the impact of pollution and other stress on ecosystem structure and function. Academic Press, San Diego, 454 pp.Google Scholar
  12. Hamilton, E. I. 1979. The chemical elements and man, John Wiley, New York, 578 pp.Google Scholar
  13. Hamilton, E. I. 1980. The need for trace element analyses of biological materials in the environmental sciences. In: International Atomic Energy Agency (ed.) Element analysis of biological materials-current problems and techniques with special reference to trace elements, Technical Report Series No. 197, Vienna, 39–54.Google Scholar
  14. Horovitz, C. T. 1988. Is the major part of the periodic system really inessential for life?, J. Trace Elem. Electrolytes Health Dis. 2: 135–144.Google Scholar
  15. Irgolic, K. J. & Martell, A. E. (eds.) 1985. Environmental inorganic chemistry, VCH Verlagsgesellschaft mbH, Weinheim, 654 pp.Google Scholar
  16. Iyengar, V. G. 1988. Biological trace element research: A multidisciplinary science. The Science of the Total Environment 71: 1–5.Google Scholar
  17. Iyengar, G. V. 1989. Elemental analysis of biological systems, biological, medical, environmental, compositional and methodological aspects, CRC Press, Boca Raton, 430 pp.Google Scholar
  18. Jayasekera, R. 1987. Growth characteristics and uptake of minerals of the two mangrove species Rhizophora mangle L. and Rhizophora mucronata Lamk. under different environmental conditions, PHd Thesis, University of Osnabrück, 216 pp.Google Scholar
  19. Jayasekera, R. & Markert, B. 1989. Multi-laboratory chemical characterization of ecological samples, Fresenius Zeitschrift für Analytische Chemie 334: 226–230.Google Scholar
  20. Kabata-Pendias, A. & Pendias, H. 1984. Trace elements in soils and plants, CRC Press, Boca Raton, 315 pp.Google Scholar
  21. Kinzl, H. 1982. Pflanzenökologie und Mineralstoffwechsel, Verlag Eugen Ulmer, Stuttgart, 534 pp.Google Scholar
  22. Knapp, G. 1984. Der Weg zu leistungsfähigen Methoden der Elementspurenanalyse in Umweltproben, Fresenius Zeitschrift für Analytische Chemie 317: 213–219.Google Scholar
  23. Kovacs, M. 1982. Chemical composition of the lesser reedmace (Typha angustifolia) in lake Balaton, Acta Bot. Acad. Sci. Hung. 28: 297–307.Google Scholar
  24. Kovacs, M., Turcsanyi, G., Nagy, L., Koltay, A., Kaszab, L. & Szöke, P. 1990. Element concentration cadasters in a Quercetum petraeae-cerris forest. In: Lieth, H. and Markert, B. (eds.) 1990. Element concentration cadasters in ecosystems, VCH Verlagsgesellschaft mbH, Weinheim, 255–265.Google Scholar
  25. Lieth, H. & Markert, B. 1985. Concentration cadasters of chemical elements in contrasting ecosystems, Naturwissenschaften 72: 322–324.Google Scholar
  26. Lieth, H. & Markert, B. 1988a. Aufstellung und Auswertung ökosystemarer Element-Konzentration-Kataster, Springer Verlag, Berlin, Heidelberg, New York, 193 pp.Google Scholar
  27. Lieth, H. & Markert, B. 1988b. The establishment of element concentration cadasters for ecosystems (ECCE) in the different vegetation zones of the earth, Biology International 16: 7–11.Google Scholar
  28. Lieth, H., Jayasekera, R. & Markert, B. 1989. The application of element concentration cadasters to different ecological and ecophysiological problems. In: Caroli, S., Rossi, G., Sabbioni, E. und Zimmer, K. (eds.) Proceedings of the Third Italo-Hungarian Symposium on Spectrochemistry, CEC, Joint Research Centre, Ispra, 8–12 June 1987, 71–86.Google Scholar
  29. Lieth, H. & Markert, B. (eds.) 1990. Element concentration cadasters in ecosystems, Methods of assessment and evaluation, VCH Verlagsgesellschaft mbH, Weinheim, 448 pp.Google Scholar
  30. Markert, B. 1991a. Multi-element analysis in plant materials. In: Esser, G. and Overdieck, D. (eds.) Modern Ecology: Basic and Applied Aspects, Elsevier, Amsterdam, London, New York, Tokio, 275–293.Google Scholar
  31. Markert, B. 1991b. Multi-element analysis in ecosystems—analytical tools and biological questions. In: Adriano, D. C. and Page, A. L. (eds.). Trace metals in soils, plants, animals, and water, CRC-Press, Boca Raton, Florida (in press).Google Scholar
  32. Markert, B. 1991c. Instrumentelle Mutielementanalyse in Pflanzenproben, VCH-Publisher, Inc., Weinheim and New York (in prep.).Google Scholar
  33. Markert, B. 1991d. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR, Part 1: Mosses and peat profiles as bioindicators for different chemical elements, Vegetatio 95: 127–135.Google Scholar
  34. Markert, B. (ed.) 1992. Plants as biomonitors for heavy metal pollution of the terrestrial environment, VCH-Publisher, Weinheim and New York (in prep.).Google Scholar
  35. Markert, B. & Lieth, H. 1985. Elementkonzentrationskataster für einige Pflanzen in kontrastierenden Ökosystemen, Veröffentlichungen der Naturforschenden Gesellschaft zu Emden, Band 5, Serie Jahresberichte, 27–56.Google Scholar
  36. Markert, B. & Lieth, H. 1987. Element concentration cadasters in a Swedish biotope/Reference standard for inorganic environmental chemistry, Fresenius Zeitschrift für Analytische Chemie 326: 716–718.Google Scholar
  37. Markert, B. & Weckert, V. 1989. Fluctuations of element concentrations during the growing season of Polytrichum formosum (Hedw.), Water, Air, and Soil Pollution 43: 177–189.Google Scholar
  38. Markert, B. & Klausmeyer, N. 1990. Variations in the elemental compositions of plants and computer aided sampling in ecosystems, Toxicological and Environmental Chemistry 25: 200–212.Google Scholar
  39. Markert, B. & Zhang De Li 1991. Inorganic chemical investigations in the Forest Biosphere Reserve near Kalinin, USSR. Part 2: The distribution of lanthanide elements in the vegetation cover, Vegetatio (in press).Google Scholar
  40. Marschner, H. 1983. General introduction to the mineral nutrition of plants. In: Läuchli, A. and Bieleski, R. L. (eds.) Encyclopedia of Plant Physiology, New Series Vol. 15A: 5–60.Google Scholar
  41. Marschner, H. 1986. Mineral nutrition of higher plants, Academic Press, London, New York 762 pp.Google Scholar
  42. Mc Kenzie, H. A. & Smythe, L. E. (eds.) 1988. Quantitative trace analysis of biological materials, Elsevier Science Publications, Amsterdam, New York, Oxford, 791 pp.Google Scholar
  43. Mengel, K. 1984. Ernährung und Stoffwechsel der Pflanze, Fischer Verlag, Stuttgart, New York, 431 pp.Google Scholar
  44. Merian, E., (ed.) 1991. Metals and their compounds in the environment, VCH-Publisher, Weinheim. 1081 pp.Google Scholar
  45. Nriagu, J. O. & Pacyna, J. M. 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333: 134–139.Google Scholar
  46. Rossbach, M. 1986. Instrumentelle Neutronenaktivierungsanalyse zur standortabhängigen Aufnahme und Verteilung von Spurenelementen durch die Salzmarschpflanze Aster tripolium von Marschwiesen des Scheldeestuars, Niederlande. In: Stoeppler, M. and Dürbeck, H. W. (eds.) Beiträge zur Umweltprobenbank, Jül. Spez., 171 pp.Google Scholar
  47. Sansoni, B. (ed.) 1985. Instrumentelle Multielementanalyse, VCH Verlagsgesellschaft mbH, Weinheim, 782 pp.Google Scholar
  48. Sansoni, B. 1987. Multi-element analysis for environmental characterisation. Pure & Appl. Chem. 59, 4: 579–610.Google Scholar
  49. Schramel, P. & Li-Qiang, Xu 1991. Determination of arsenic, antimony, bismuth, selenium, and tin in biological and environmental samples by continuous flow hydride generation ICP-AES without gas-liquid separator, Fresenius Journal for Analytical Chemistry 340: 41–47.Google Scholar
  50. Stoeppler, M., Dürbeck, H. W. & Nuernberg, H. W. 1982. Environmental specimen banking, a challenge in trace analysis, Talanta 29: 963–972.Google Scholar
  51. Tölg, G. 1989. Analytical chemistry and the quality of life, Kontakte, Darmstadt 20–29.Google Scholar
  52. Zeisler, R., Stone, S. F. & Sanders, R. W. 1988. Sequential determination of biological and pollutant elements in marine bivalves. Anal. Chem. 60: 2760–2765.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • B. Markert
    • 1
  • W. Wtorova
    • 2
  1. 1.Systems Research GroupUniversity of OsnabrückOsnabrückFRG
  2. 2.Laboratory of General EcologyMoscowUSSR

Personalised recommendations