, Volume 98, Issue 1, pp 13–22 | Cite as

Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile

  • J. J. Armesto
  • I. Casassa
  • O. Dollenz


This study documents the stem size and age-structure in forests dominated by different species of Nothofagus in Torres del Paine National Park (51° S), in the Chilean Patagonian region. We also explored the relationship between the various types of Nothofagus forest and postglacial succession. Pioneer stands on moraine fields 1–2 km of the glacier front are dominated by Nothofagus betuloides and Nothofagus antarctica. Moraines appear to be first colonized by the evergreen N. betuloides, followed within 5–7 years by deciduous N. antarctica. Nothofagus antarctica may replace the former species and develop monospecific stands on glacial valleys. Most trees in the N. antarctica stand studied were older than 40 years and floods may cause a significant mortality of young trees. Recruitment from seed seems to be infrequent. Old-growth stands dominated by deciduous Nothofagus pumilio occupy more stable substrates, and probably represent the last stage of postglacial succession. This long-lived tree species had recorded ages over 200 years. The canopy of N. pumilio forests appears to be a mosaic of even-aged, old-growth patches. We propose that regeneration episodes follow the blowdown of a large portion of the canopy, with long intervals with little or no regeneration. Windstorms may be an important force influencing the regeneration of N. pumilio. Exogenous disturbances, such as floods and windstorms, are an integral part of the forest cycle in the Patagonian region.


Forest succession Disturbance Nothofagus Flooding Tree regeneration Colonization of moraines Primary succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almeyda, A. E., 1958. Recopilación de datos climáticos de Chile y Mapassinópticos. Ministerio de Ag icultura. Santiago, Chile.Google Scholar
  2. Kruger, F. J., Mitchell, D. T. & Jarvis, J. s. 1983. Mediterranean-type ecosystems. The role of nutrients. Springer-Verlag, Berlin.Google Scholar
  3. Lawrence, D. B., Schoenike, R. E., Quispel, A. & Bond, G. 1967. The role of Dryas drummondi in vegetation development following ice recession at Glacier Bay, with special reference to its nitrogen fixation by root nodules. Journal of Ecology 55: 793–813.Google Scholar
  4. Mueller-Dombois, D. & Ellenberg, H., 1974. Aims & methods of vegetation ecology, John Wiley, New York.Google Scholar
  5. Pisano, E. V., 1974. Estudio ecológico de la región continental sur del área Andino-Patagónica. II. Contribución a la fitogeografia de la zona del Parque Nacional ‘Torres del Paine’. Anales del Instituto de la Patagonia, Punta Arenas (Chile) 5: 59–104.Google Scholar
  6. Pisano, E., 1978. Establecimiento de Nothofagus betuloides (Mirb.) Blume en un valle en proceso de desglaciación. Anales del Instituto de la Patagonia, Punta Arenas (Chile) 9: 107–128.Google Scholar
  7. Roig, F., Anchorena, J., Dollenz, O., Faggi, A. & Mendez, E. 1985. Las comunidades vegetales de la Transecta Botanica de la Patagonia Austral. I. La vegetacion del area continental. In: O. Boelcke, D. M. Moore & F. Roig (eds.), Transecta Botanica de la Patagonia Austral, pp. 350–365. INTA, Buenos. Aires. Argentina.Google Scholar
  8. Sweda, T., 1987. Recent retreat of Soler Glacier, Patagonia as seen from vegetation recovery. Bulletin of Glacier Research 4: 119–124.Google Scholar
  9. Tilman, D. 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey.Google Scholar
  10. Tilman, D., 1985. The resource-ratio hypothesis of succession. American Naturalist 125: 827–852.Google Scholar
  11. Tilman, D., 1986. Resource competition and the dynamics of plant communities. In: M. Crawley (ed.) Plant Ecology, pp. 51–78. Blackwell, Oxford.Google Scholar
  12. Veblen, T. T., 1985. Stand dynamics in Chilean Nothofagus forests. In: S. T. A. Pickett & P. S. White (eds.) The ecology of natural disturbance and patch dynamics, pp. 34–51. Academic Press, London.Google Scholar
  13. Veblen, T. T., Schlegel, F. M. & Oltremari, J. V. 1983. Temperate broad leaved evergreen forests of South America. In: J. D. Ovington (ed.) Temperate broad-leaved evergreen forests, pp. 5–31. Elsevier, Amsterdam.Google Scholar
  14. Vitousek, P. M. 1982. Nutrient cycling and nitrogen use efficiency. American Naturalist 119: 553–572.Google Scholar
  15. Vitousek, P. M. & Reiners, W. A. 1975. Ecosystem succession and nutrient retention: A hypothesis. Bioscience 25: 376–381.Google Scholar
  16. Vitousek, P. M. & White, P. S. 1981. Process studies in succession. In: D. C. West, H. Shugart & D. Botkin (eds.) Forest Succession. Concepts and Application, pp. 267–276. Springer, Berlin.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • J. J. Armesto
    • 1
  • I. Casassa
    • 1
  • O. Dollenz
    • 2
  1. 1.Laboratorio de Sistemática & Ecología Vegetal, Facultad de CienciasUniversidad de ChileSantiagoChile
  2. 2.Instituto de la PatagoniaUniversidad de MagallanesPunta ArenasChile

Personalised recommendations