Skip to main content
Log in

Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation

  • Lakes and ponds
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Hoare (77° 38′ S, 162° 53′ E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3–5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30–60 years. Therefore, the lake environment responds to changes on a 10–100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, W. P. and Lasenby, D. C. 1978. The role of ice and snow in lake heat budgets. Limnol. oceanogr. 23: 1025–1028.

    Google Scholar 

  • Allnutt, F. T. C., Parker, B. C., Seaburg, K. G., and Simmons, G. M., Jr., 1981. In situ nitrogen C2H2-fixation in lakes of southern Victoria Land, Antarctica. Hydrobiol. Bull. 15: 99–109.

    Google Scholar 

  • Anderson, J., 1983. Spatial and temporal distribution of glacial marine sediment, p. 1–99. In B. F. Molnia (ed.), Global marine sedimentation. Plenum Press, New York.

    Google Scholar 

  • Awramik, S. M., Margulis, L., and Barghoorn, E. S., 1976. Evolutionary processes in the formation of stromatolites, p. 149–162. In M. R. Walter (ed.), Stromatolites, Elsevier, Amsterdam.

    Google Scholar 

  • Benoit, R., Hatcher, R., Green, W., 1971. Bacteriological profiles and some chemical characteristics of two permanently frozen Antarctic lakes, p. 281–293. In J. Cairns, Jr. (ed.) The structure and function of freshwater microbial communities. Research Division Monograph no. 3, Virginia Polytechnic Institute and State University, Blacksburg, VA.

    Google Scholar 

  • Bydder, E. C. and Holdsworth, R., 1977. Lake Vanda (Antarctica) revisited. N.Z. J. Geol. Geophys. 20: 1027–1032.

    Google Scholar 

  • Cathey, D. D., Simmons, G. M., Jr., Parker, B. C., Yongue, W. H., VanBrunt, M. R., 1982. Protozoan colonization of artificial substrate in two Antarctic lakes. Trans. Amer. Microscop. Soc. 101: 353–367.

    Google Scholar 

  • Chinn, T. J. H., 1982. Hydrology and climate in the Ross Sea area. J. Roy. Soc. N.Z. 11: 373–386.

    Google Scholar 

  • Chinn, T. J. H., 1985. Structure and equilibrium of the dry valley glaciers. N.Z. Ant. Rec. vol. 6, Spec. Suppl., pp. 73–88.

    Google Scholar 

  • Clow, G. D., McKay, C. P., Simmons, G. M., Jr., Wharton, R. A., Jr., 1988. Climatological observations and predicted sublimation rates at Lake Hoare, Antarctica. J. Appl. Met. Clim. in press.

  • Craig, H. and Hayward, T., 1987. Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235: 199–202.

    Google Scholar 

  • Friedman, E. I., 1982. Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1053.

    Google Scholar 

  • Friedman, E. I., and Weed, R., 1987. Microbial trace-fossils formation, biogenous, and abiotic weathering in the Antarctic cold desert. Science 236: 703–705.

    Google Scholar 

  • Goldman, C. R., Mason, D. T., Hobbie, J. E., 1967. Two Antarctic desert lakes. Limnol. Oceanogr. 12: 295–310.

    Google Scholar 

  • Hawes, I., 1983a. Nutrients and their effects on phytoplankton in populations in lakes on Signy Island, Antarctica. Polar Biol. 2: 115–126.

    Google Scholar 

  • Hawes, I., 1983b. Turbulent mixing and its consequences on phytoplankton development in two ice covered lakes. Bull. British Antarc. Surv. 60: 69–82.

    Google Scholar 

  • Hawes, I., 1985. Factors controlling phytoplankton populations in maritime Antarctic lakes, p. 245–252. In W. R. Siegfried, P. R. Condy, R. M. Laws (ed.), Antarctic nutrient cycles and food webs, Proc. 4th SCAR Symposium on Antarctic Biology. Springer, Berlin, Heidelberg, New York, Berlin.

    Google Scholar 

  • Henderson, R. A., Prebble, W. M., Hoare, R. A., Popplewell, K. B., House, D. A., and Wilson, A. T., 1965. An ablation rate for Lake Fryxell, Victoria Land, Antarctica. J. Glaciol. 6: 129–133.

    Google Scholar 

  • Heywood, R. B., 1984. Antarctic inland waters, p. 279–344. In R. M. Laws (ed.), Antarctic Ecology. Academic Press, London.

    Google Scholar 

  • Heywood, R. B., 1972. Antarctic limnology. A review. British Ant. Surv. Bull. 29: 34–65.

    Google Scholar 

  • Hoare, R. A., 1966. Problems of heat transfer in Lake Vanda, a density stratified Antarctic lake. Nature 210: 787–789.

    Google Scholar 

  • Hobbie, J. E., 1984. Polar limnology, p. 63–105. In F. B. Taub (ed.), Lakes and Reservoirs. Elsevier.

  • Huxley, L. (Arranger). 1913. Scott's Last Expedition. II. Being the reports of the journeys and the scientific work undertaken by Dr. E. A. Wilson and the surviving members of the expedition. Smith, Elder Co., London, 633 pp.

    Google Scholar 

  • Light, J. J., Ellis-Evans, J. C., and Priddle, J. 1981. Phytoplankton ecology in an Antarctic lake. Freshwater Biol. 11: 11–26.

    Google Scholar 

  • Love, F. G., Simmons, G. M., Jr., Wharton, R. A., Jr., Parker, B. C., 1982. Methods for melting dive holes in thick ice and vibracoring beneath ice. J. Sed. Petrol. 52: 644–647.

    Google Scholar 

  • Love, F. G., 1983. Modern Conophyton-like algal mats discovered in Lake Vanda, Antarctica. Geomicrobiol. J. 3: 33–48

    Google Scholar 

  • McKay, C. P., 1986. Exobiology and future Mars missions: The search for Mars' earliest biosphere. Adv. Space Res. 6: 269–285.

    Google Scholar 

  • McKay, C. P., Clow, G. A., Wharton, R. A., Jr. and Squyres, S. W., 1985. Thickness of ice on perennially frozen lakes. Nature 313: 561–562.

    Google Scholar 

  • Mikell, A. T., Jr., Parker, B. C., Simmons, G. M., Jr., 1984. Response of an Antarctic lake heterotrophic community to high dissolved oxygen. Appl. Environ. Microbiol. 47: 1062–1066.

    Google Scholar 

  • Nedell, S. S., Squyres, S. W., and Andersen, D. W., 1987a. Origin and evolution of the layered deposits in the Valles Marineris, Mars. Icarus. 70: 409–441.

    Google Scholar 

  • Nedell, S. S., Andersen, D. W., Squyres, S. W., and Love, F. G., 1987b. Sedimentation in ice covered Lake Hoare, Antarctica. Sedimentology. 34: 1093–1106.

    Google Scholar 

  • Nedell, S. S., Andersen, D. W., Squyres, S. W., and Wharton, R. A., Jr. Lake Hoare, Antarctica: Sedimentation through a thick perennial ice cover. in prep.

  • Palmisano, A. C. and Simmons, G. M., Jr., 1987. Spectral downwelling irradiance in an Antarctic lake. Polar Biol. 7: 145–151.

    Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Love, F. G., Wharton, R. A., Jr., Seaburg, K. G., 1981. Modern stromatolites in Antarctic dry valley lakes. BioScience 31: 656–661.

    Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Seaburg, K. G., Cathey, D. D., Allnutt, F. C. T., 1982a. Comparative ecology of plankton communities in seven Antarctic oasis lakes. J. Plankt. Res. 4: 271–286.

    Google Scholar 

  • Parker, B. C., Simmons, G. M., Jr., Wharton, R. A., Seaburg, K. G., Love, F. G., 1982b. Removal of organic and inorganic matter from Antarctic lakes by aerial escape of bluegreen algal mats. J. Phycol. 18: 72–78.

    Google Scholar 

  • Priddle, J., 1980. The production ecology of benthic plants in some Antarctic lakes. I. In situ productivity studies. J. Ecol. 68: 141–153.

    Google Scholar 

  • Priscu, J. C., Priscu, L. R., Vincent, W. F., Howard-Williams, C., 1987. Photosynthate distribution by microplankton in permanent ice-covered Antarctic lakes. Limnol. Oceanogr. 32: 260–270.

    Google Scholar 

  • Ragotzkie, R. A. and Likens, G. E., 1964. The heat balance of two Antarctic lakes. Limnol. Oceanogr. 9: 412–425.

    Google Scholar 

  • Rigler, F. H., 1978. Limnology in the high Arctic: a case history study of Char Lake. Verh. Internat. Verein. Limnol. 20: 127–140.

    Google Scholar 

  • Rodhe, W., 1956. Can plankton production proceed during winter darkness in subarctic lakes? Verh. Internat. Verein. Limnol. 16: 302–313.

    Google Scholar 

  • Roulet, N. T. and Adams, W. P., 1984. Illustration of the spatial variability of light entering a lake using an empirical model. Hydrobiol. 109: 67–74.

    Google Scholar 

  • Scott, R. F., 1905. The Voyage of Discovery. Vol. 2, McMillian and Co., London, pp. 214–215.

    Google Scholar 

  • Seaburg, K. G.; Kaspar, M.; Parker, B. G., 1983. Photosynthetic quantum efficiencies of phytoplankton from perennially ice covered Antarctic lakes. J. Phycol. 19: 446–452.

    Google Scholar 

  • Seaburg, K. G., Wharton, R. A., Jr., Parker, B. C., Simmons, G. M., Jr., 1982. Temperature-growth responses of algal isolates from Antarctic oasis lakes. J. Phycol. 17: 353–360.

    Google Scholar 

  • Simmons, G. M., Jr., Parker, B. C., Allnutt, F. T. C., Brown, D., Cathey, D., Seaburg, K. G., 1979. Ecological comparisons of oasis lakes and soils. Antarct. J. US 14: 181–183.

    Google Scholar 

  • Simmons, G. M., Jr., Wharton, R. A., Jr., Parker, B. C., Anderson, D., 1983. Chlorophyll a and adenosine triphosphate levels in Antarctic and temperate lake sediments. Microb. Ecol. 9: 123–135.

    Google Scholar 

  • Simmons, G. M., Jr., Wharton, R. A., Jr., McKay, C. P., Nedell, S., Clow, G., 1986. Sand/ice interactions and sediment deposition in perennially ice-covered Antarctic lakes. Antarct. J. US. 21: 217–220.

    Google Scholar 

  • Simmons, G. M. Jr., and Netherton, J., 1987. Groundwater discharge in a deep coral reef habitat-evidence for a new biogeochemical cycle? Proc. Amer. Acad. Underwater Sci. In press.

  • Solopov, A. V., 1967. Oases in Antarctica (Russian Trans.). National Science Foundation, Washington. 46 pp.

    Google Scholar 

  • Thompson, D. G., Craig, R. M. F., Bromley, A. M., 1971. Climate and surface heat balance in an Antarctic Dry Valley. N.Z. J. Geophys. 14: 245–251.

    Google Scholar 

  • Tominaga, H., 1977. Photosynthetic nature and primary productivity of Antarctic freshwater phytoplankton. Japan J. Limnol. 38: 122–130.

    Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton ecophysiology in a permanently ice covered lake. Ecol. 62: 1215–1224.

    Google Scholar 

  • Vincent, W. F., Vincent, C. L., 1982. Factors controlling phytoplankton production in Lake Vanda (77°S). Can. J. Fish. Aquat. Sci. 39: 1602–1609.

    Google Scholar 

  • Vincent, W. F. and Howard-Williams, C., 1985. Ecosystem properties of dry valley lakes. N.Z. Ant. Rec., Vol. 6, Special Suppl. pp. 11–20.

    Google Scholar 

  • Walter, M. R. and Bauld, J., 1983. The association of sulphate evaporites, stromatolitic carbonates and glacial sediments: examples from the proterozoic of Australia and the Cainozoic of Antarctica. Precambrian Res. 21: 129–148.

    Google Scholar 

  • Wharton, Jr., R. A., Parker, B. C., Simmons, G. M., Jr., Seaburg, K. G., Love, F. G., 1982. Biogenic calcite structures forming in Lake Fryxell, Antarctica. Nature 295: 403–405.

    Google Scholar 

  • Wharton, Jr., R. A., Parker, B. C., Simmons, G. M., Jr. 1983. Distribution, species composition, and morphology of algal matas in Antarctic dry valley lakes. Phycologia 22: 355–365.

    Google Scholar 

  • Wharton, Jr., R. A., McKay, C. P., Simmons, G. M., Jr., and Parker, B. C., 1986. Oxygen budget of a perennially ice covered Antarctic lake. Limnol. Oceanogr. 31: 437–443.

    Google Scholar 

  • Wharton, Jr., R. A., McKay, C. P., Mancinelli, R. L., and Simmons, G. M., Jr., 1987. Perennial N2, supersaturation in an Antarctic lake. Nature. 325: 343–345.

    Google Scholar 

  • Wilson, A. T., 1979. Geochemical problems of the Antarctic dry area. Nature 280: 205–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wharton, R.A., Simmons, G.M. & McKay, C.P. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation. Hydrobiologia 172, 305–320 (1989). https://doi.org/10.1007/BF00031629

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00031629

Key words

Navigation