Epiphytic vegetation on Acer macrophyllum: a multivariate study of species-habitat relationships

Abstract

Multivariate methods were used to examine epiphytic species composition on the lower trunk of Acer macrophyllum at five sites in south-coastal British Columbia, Canada. Differences in species composition and abundance between sites were attributed mainly to variation in relative humidity and light conditions. Bark chemistry differences accounted for only a small portion of the observed variation in epiphytic composition between sites. Within sites, compositional variation was examined over 0.5–5 m from ground level on the upper, vertical, and lower trunk surfaces of leaning trees. Compositional variation of the epiphytic vegetation with height and inclination tended to be more strongly developed at drier sites. Furthermore, at all sites compositional variation tended to be greater on upper (wetter) than on lower (drier) surfaces. Particular epiphytic species tended to occur in similar locations on the trunk surface at different sites, suggesting that some microhabitat specialization has occurred. Observed distributional shifts of epiphytic species appeared to be greatest among sites differing widely in prevailing microenvironmental conditions.

This is a preview of subscription content, log in to check access.

References

  1. BarkmanJ. J., 1958. Phytosociology and ecology of cryptogamic epiphytes. van Gorcum, Assen, Netherlands. 628 pp.

    Google Scholar 

  2. BartlettM. S., 1947. Multivariate analysis. J. Royal Stat. Soc., Ser. B. 9: 176–197.

    Google Scholar 

  3. BatesJ. W. & BrownD. H., 1981. Epiphytic differntiation between Quercus petraea and Fraxinus excelsior trees in a maritime area of South West England. Vegetatio 48: 61–70.

    Google Scholar 

  4. Environment Canada, 1970. Temperature and precipitation, 1941–1970, British Columbia. Atmospheric Environment Service, Downsview, Ontario.

    Google Scholar 

  5. GiminghamC. H. & BirseE. M., 1957. Ecological studies of growth-form in bryophytes. I. Correlations between growth-form and habitat. J. Ecol. 45: 533–545.

    Google Scholar 

  6. GiminghamC. H. & RobertsonE. T., 1950. Preliminary investigations on the structure of bryophytic communities. Trans. Brit. Bryol. Soc. 1: 330–342.

    Google Scholar 

  7. GittinsR., 1985. Canonical analysis — A review with applications in ecology. Biomathematics, Vol. 12. Springer-Verlag, Berlin. 351 pp.

    Google Scholar 

  8. GoughL. P., 1975. Cryptogam distributions on Pseudotsuga menziesii and Abies lasiocarpa in the Front Range, Boulder Country, Colorado. Bryologist 78: 124–145.

    Google Scholar 

  9. Greig-SmithP., 1982. Quantitative plant ecology. 3rd ed. Blackwells, Oxford. 359 pp.

    Google Scholar 

  10. GrubbP. J., 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52: 107–145.

    Google Scholar 

  11. HaleM. E. & CulbersonW. L., 1970. A fourth checklist of the lichens of the continental United States and Canada. Bryologist 73: 499–543.

    Google Scholar 

  12. HarrisG. P., 1971. The ecology of corticolous lichens. I. The zonation on oak and birch in South Devon. J. Ecol. 59: 431–439.

    Google Scholar 

  13. HoffmanG. R. & GatesD. M., 1970. An energy budget approach to the study of water loss in cryptograms. Bull. Torrey Bot. Club 97: 361–366.

    Google Scholar 

  14. HoffmanG. R. & KazmierskiR. G., 1969. An ecologic study of epiphytic bryophytes and lichens on Pseudotsuga menziesii on the Olympic Peninsula, Washington. I. A description of the vegetation. Bryologist 72: 1–19.

    Google Scholar 

  15. HosakawaT. & OdaniN., 1957. The daily compensation period and vertical ranges of epiphytes in a beech forest. J. Ecol. 45: 901–915.

    Google Scholar 

  16. IwatsukiZ., 1960. The epiphytic bryophyte communities in Japan. J. Hattori Bot. Lab. 22: 159–352.

    Google Scholar 

  17. JonescuM. E., 1970. Lichens on Populus tremuloides in west-central Canada. Bryologist 73: 557–578.

    Google Scholar 

  18. KenkelN. C. & BradfieldG. E., 1981. Ordination of epiphytic bryophyte communities in a wet-temperate coniferous forest, south-coastal British Columbia. Vegetatio 45: 147–154.

    Google Scholar 

  19. MorrisonD. F., 1976. Multivariate statistical methods. 2nd ed. McGraw-Hill, New York. 338 pp.

    Google Scholar 

  20. NadkarniN. M., 1984. Biomass and mineral capital of epiphytes in an Acer macrophyllum community of a temperate moist coniferous forest, Olympic Peninsula, Washington state. Can. J. Bot. 62: 2223–2228.

    Google Scholar 

  21. OmuraM., NishiharaY. & HosokawaT., 1955. On the epiphyte communities in beech forest of Mt. Hiko in Japan. Rev. Bryol. Lichenol. 24: 59–68.

    Google Scholar 

  22. PikeL., 1978. The importance of epiphytic lichens in mineral cycles. Bryologist 81: 247–257.

    Google Scholar 

  23. PitkinP. H., 1975. Variability and seasonality of the growth of some corticolous pleurocarpous mosses. J. Bryol. 8: 337–356.

    Google Scholar 

  24. PócsT., 1983. Tropical forest bryophytes. In: A. J. B.Smith (ed.), Bryophyte ecology, pp. 59–104. Chapman and Hall, London.

    Google Scholar 

  25. ProctorM. C. F., 1983. Physiological ecology: water relations, light and temperature responses, carbon balance. In: A. J. B.Smith (ed.), Bryophyte ecology. pp. 333–381. Chapman and Hall, London.

    Google Scholar 

  26. RasmussenL., 1975. The bryophytic epiphyte vegetation in the forest Slotved Skov, northern Jutland. Lindbergia 3: 15–38.

    Google Scholar 

  27. SchönemannP. H. & CarrollR. M., 1970. Fitting one matrix to another under choice of a central dilation and a rigid motion. Psychometrika 35: 245–256.

    Google Scholar 

  28. SjögrenE. 1961. Epiphytische Moosvegetation in Laubwäldern der Insel Öland. Acta Phytogeogr. Suec. 44: 1–145.

    Google Scholar 

  29. VittD. H., OstafichukM. & BrodoI. M., 1973. Foliicolous bryophytes and lichens of Thuja plicata in western British Columbia. Can. J. Bot. 51: 571–580.

    Google Scholar 

  30. WattA. S., 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.

    Google Scholar 

  31. YarrantonG. A., 1972. Distribution and succession of epiphytic lichens on black spruce near Cochrane, Ontario. Bryologist 75: 462–480.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Nomenclature follows Hitchcock & Cronquist (1973) Flora of the Pacific Northwest for vascular plants, Schofield (1976) Bryophytes of British Columbia for mosses, Stotler & Crandall-Stotler (1977) A checklist of the liverworts and hornworts of North America for hepatics, and Hale & Culberson (1970) A fourth Checklist of the lichens of the continental United States and Canada for lichens.

Support from the Natural Sciences and Engineering Research Council, through an operating grant to G.E.B. and a scholarship to N.C.K., is gratefully acknowledged. We thank Dr. H. Kimmins for providing facilities and technical expertise for the analysis of bark nutrients.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kenkel, N.C., Bradfield, G.E. Epiphytic vegetation on Acer macrophyllum: a multivariate study of species-habitat relationships. Vegetatio 68, 43–53 (1986). https://doi.org/10.1007/BF00031579

Download citation

Keywords

  • Acer macrophyllum
  • Bark chemistry
  • Bryophyte
  • Canonical analysis
  • Epiphyte
  • Gradient
  • Height
  • Inclination
  • Lichen
  • Microenvironment
  • Procrustes analysis