Skip to main content
Log in

Photosynthetic free energy transduction related to the electric potential changes across the thylakoid membrane

  • Membrane Structure and Ion Transport
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A model based on our present knowledge of photosynthetic energy transduction is presented. Calculated electric potential profiles are compared with microelectrode recordings of the thylakoid electric potential during and after actinic illumination periods of intermediate duration. The information content of the measured electric response is disclosed by a comparison of experimental results with calculations. The proton flux through the ATP synthase complex is seen to markedly influence the electric response. Also the imbalance in maximum turnover rate between the two photosystems, common to obligate shade plants like Peperomia metallica used in the microelectrode experiments, is clearly reflected in the electric potential profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber J (1972) Biochim Biophys Acta 275, 105–116

    Google Scholar 

  2. Barber J (1976) in: The Intact Chloroplast (Barber J, ed), Vol 1, pp. 89–134, Elsevier, North-Holland

    Google Scholar 

  3. Barber J (1980) Biochim Biophys Acta 594, 255–308

    Google Scholar 

  4. Bertrand D, Bertrand C and Bertrand P, Henauer R and Bader CR (1983) J Neurosci Meth 7, 171–183

    Google Scholar 

  5. Björkman O (1981) in: Eneyclopedia of Plant Physiology vol. 16A (Lanse OL, Nobel PS, Osmond CB and Ziesler H eds), pp. 57–107, Springer Verlag, Berlin

    Google Scholar 

  6. Bulychev AA, Andrianov VK, Kurella GA, Litvin FF (1971) Soviet Plant Physiol 18, 204–210

    Google Scholar 

  7. Bulychev AA, Andrianov VK, Kurella GA and Litvin FF (1972) Nature 236, 175–177

    Google Scholar 

  8. Bulychev AA, Andrianov VK, Kurella GA and Litvin FF (1976) Biochim Biophys Acta 420, 336–351

    Google Scholar 

  9. Bulychev AA and Vredenberg WJ (1976) Biochim Biophys Acta 449, 48–58

    Google Scholar 

  10. Bulychev AA, Andrianov VK and Kurella GA (1980) Biochim Biophys Acta 590, 300–308

    Google Scholar 

  11. Bulychev AA (1984) Biochim Biophys Acta 766, 647–652

    Google Scholar 

  12. Coughlan SJ and Schreiber U (1984) Z Naturforsch 39c, 1120–1127

    Google Scholar 

  13. Cramer WA and Crofts AR (1982) in: Photosynthesis (Govindjee, ed), Vol I, pp. 387–467, Academic Press

  14. Dietz KJ, Neimanis S and Heber U (1984) Biochim Biophys Acta 767, 444–450

    Google Scholar 

  15. Duysens LNM (1954) Science 120, 353–354

    Google Scholar 

  16. Giersch C, Heber U, Kobayashi Y, Inoue Y, Shibata K and Heldt HW (1989) Biochim Biophys Acta 590, 59–73

    Google Scholar 

  17. Goldmann DE (1943) J Gen Physiol 27, 37–60

    Google Scholar 

  18. Graeber P and Schlodder E (1981) in: Photosynthesis (Akoyunoglou G, ed), Vol II, pp. 867–879, Balaban Int., Philadelphia

    Google Scholar 

  19. Graeber P (1982) in: Current Topics in Membranes and Transport. Vol 16, pp. 215–245, Academic Press

  20. Graeber P (1984) in: Charge and Field Effects in Biosystems (Allen MJ and Usherwood PNR, eds), pp. 227–242, Abacus Press

  21. Graeber P, Junesch U and Schatz GH (1984) Ber Bunsenges Phys Chem 88, 599–608

    Google Scholar 

  22. Haehnel W (1984) Ann Rev Plant Physiol 35, 659–693

    Google Scholar 

  23. Heldt HW, Werden K, Milovancev M and Geller G (1973) Biochim Biophys Acta 314, 224–241

    Google Scholar 

  24. Huber HL and Rumerg B (1981) in: Photosynthesis I (Akoyunoglou G, ed), pp. 419–429, Balaban Int., Philadelphia

    Google Scholar 

  25. Junesch U and Graeber P (1984) in: Photosynthesis Research (Sybesma C, ed), Vol. II, pp. 431–436, Dr. W. Junk Pub., The Hague

    Google Scholar 

  26. Junge W (1977) Ann Rev Plant Physiol 28, 503–536

    Google Scholar 

  27. Junge W, Ausländer W, McGeer A and Runge T (1979) Biochim Biophys Acta 546, 121–141

    Google Scholar 

  28. Junge W and Jackson JB (1982) in: Photosynthesis (Govindjee, ed), Vol I, pp. 589–646, Academic Press

  29. Lowe AG and Jones MN (1984) Trends Biol Sci 9(1), 11–12

    Google Scholar 

  30. Mansfield RW, Nakatani HY, Barber J, Mauro S and Lannoye R (1982) FEBS Lett 137, 133–136

    Google Scholar 

  31. McCauly SW, Taylor SE, Dennenberg RJ and Melis A (1984) Biochim Biophys Acta 765, 186–195

    Google Scholar 

  32. Melis A (1984) J Cell Biol 24, 271–285

    Google Scholar 

  33. Mitchell P (1961) Nature 191, 144–148

    Google Scholar 

  34. Mitchell P (1966) Biol Rev 41, 445–502

    Google Scholar 

  35. Peters RLA, Bossen M, Van Kooten O and Vredenberg WJ (1983) J Bioenerg Biomembr 15, 335–346

    Google Scholar 

  36. Remish D, Bulychev AA and Kurella GA (1981) J Exp Bot 32, 979–987

    Google Scholar 

  37. Renger G and Schulze A (1985) Photobiochem Photobiophys 9, 79–87

    Google Scholar 

  38. Robinson SP (1985) Biochim Biophys Acta 806, 187–194

    Google Scholar 

  39. Rubin BT and Barber J (1980) Biochim Biophys Acta 592, 87–102

    Google Scholar 

  40. Schapendonk AHCM (1980) Doctoral Thesis, Agricultural University, Wageningen, the Netherlanda

  41. Schlodder E, Graeber P and Witt HT (1982) in: Electron Transport and Photophosphorylation (Barber J, ed), pp. 105–175, Elsevier

  42. Schönfeld M and Schickler H (1984) FEBS Lett 167, 231–234

    Google Scholar 

  43. Schultz SG (1980) in: Basic Principles of Membrane Transport, p. 29, Cambridge University Press, Cambridge

    Google Scholar 

  44. Siggel U (1976) Bioelectrochem Bioenerget 3, 302–318

    Google Scholar 

  45. Strotman H and Schumann J (1983) Physiol Plant 57, 375–382

    Google Scholar 

  46. Sundby C and Larsson C (1985) Biochim Biophys Acta 813, 61–67

    Google Scholar 

  47. Van Kooten O, Leermaker FAM, Peters RLA and Vredenberg WJ (1984) in: Photosynthesis Research (Sybesma C ed), Vol II, pp. 265–268, Dr. W. Junk, The Hague

    Google Scholar 

  48. Van Kooten O (1984) TIBS 9(5), 221–222

    Google Scholar 

  49. Vredenberg WJ, Homann PH and Tonk WJM (1973) Biochim Biophys Acta 314, 261–265

    Google Scholar 

  50. Vredenberg WJ and Tonk WJM (1975) Biochim Biophys Acta 387, 580–587

    Google Scholar 

  51. Vredenberg WJ (1976) in: The Intact Chloroplast (Barber J, ed), Vol I, pp. 53–88, Elsevier, North-Holland

    Google Scholar 

  52. Vredenberg WJ and Bulychev AA (1976) Plant Sci Lett 7, 101–107

    Google Scholar 

  53. Vredenberg WJ (1981) Physiol Plant 53, 498–502

    Google Scholar 

  54. Walz D, Goldstein L and Avron M (1974) Eur J Biochem 47, 403–407

    Google Scholar 

  55. Werdan K, Heldt HW and Milovancev M (1975) Biochim Biophys Acta 396, 276–292

    Google Scholar 

  56. Westerhoff HV, Helgerson SL, Theg SM, Van Kooten O, Wikström M, Skulachev VP and Danscsházy Zs (1983) Acta Biochim Biophys Acta Sci Hung 18, 125–149

    Google Scholar 

  57. Whitmarsh J and Ort DR (1984) Arch Biochem Biophys 231, 378–389

    Google Scholar 

  58. Williams RJP (1985) in: The Enzymes of Biological Membranes (Martonosi AN, ed), Vol 4, pp. 71–110, Plenum Press, New York

    Google Scholar 

  59. Witt HT (1971) Quart Rev Biophys 4, 365–477

    Google Scholar 

  60. Witt HT (1979) Biochim Biophys Acta 505, 355–427

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Kooten, O., Snel, J.F.H. & Vredenberg, W.J. Photosynthetic free energy transduction related to the electric potential changes across the thylakoid membrane. Photosynth Res 9, 211–227 (1986). https://doi.org/10.1007/BF00029745

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029745

Key words

Navigation