Skip to main content
Log in

The importance of Endosperm Balance Number in potato breeding and the evolution of tuber-bearing Solanum species

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Endosperm failure is considered the primary reason for the lack of success in intra-and interspecific crosses. The Endosperm Balance Number (EBN) hypothesis is a unifying concept for predicting endosperm function in intraspecific, interploidy, and interspecific crosses. In the EBN system, every species has an ‘effective ploidy’ (EBN), which must be in a 2:1 maternal to paternal ratio in the endosperm for crosses to succeed. The knowledge of EBN is very useful in the transfer of genes from exotic germplasm, and in the development of new breeding schemes in potato. The paper describes the strategies for introducing 2x(1EBN), 2x(2EBN), 4x(2EBN) and 6x(4EBN) germplasm into the cultivated 4x(4EBN) potato gene pool. A new methodology for producing 4x(4EBN) and 2x(2EBN) chromosome addition lines is also discussed. EBN has evolutionary importance in the origin of tuber-bearing Solanums. The role of the EBN in the origin of diploid and polyploid potato species, and as a barrier for hybridization and speciation of sympatric species within the same ploidy level is demonstrated. The origin of 3x and 5x cultivated tuber-bearing Solanums may also be explained using the EBN concept. EBN has been reported to exist in other plant species: alfalfa, beans, blueberries, rice, soybeans, squashes, tomato, forage legumes, grasses, ornamentals and Datura stramonium. This indicates that EBN may have broad application and could be useful for germplasm transfer and breeding in other crop species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arisumi, T., 1982. Endosperm balance numbers among New Guinea-Indonesian Impatiens species. J. Hered. 73: 240–242.

    Google Scholar 

  • Brink, R.A., 1952. Inbreeding and crossbreeding in seed development. In: J.W. Cogan (Ed.). Heterosis, Iowa State College Press, Ames, Iowa. pp. 81–97.

    Google Scholar 

  • Brink, R.A. & D.C. Cooper, 1947. The endosperm in seed development. Bot. Rev. 13: 423–541.

    Google Scholar 

  • Camadro, E.L. & S.J. Peloquin, 1980. The occurrence and frequency of 2n pollen in three diploid Solanums from northwest Argentina. Theor. Appl. Genet. 56: 11–15.

    Google Scholar 

  • Carroll, C.P. & M. Borrill, 1965. Tetraploid hybrids from crosses between diploid and tetraploid Dactylis and their significance. Genetica 36: 65–82.

    Google Scholar 

  • Chujoy, J.E., 1985. Tuber yields of 2x and 4x progeny from 2x × 2x crosses in potatoes; Barriers to interspecific hybridization between Solanum chacoense Bitt. and S. commersonii Dun. Ph.D. Thesis. Univ. Wisconsin-Madison. 129 pp.

  • Clement, W.M.Jr., 1963. Chromosome relationships in a diploid between M. sativa and M. dzhawakhetica Bordz. Can. J. Genet. Cytol. 5: 427–432.

    Google Scholar 

  • Cooper, D.C. & R.A. Brink, 1945. Seed collapse following matings between diploid and tetraploid races of Lycopersicon pimpinellifolium. Genetics 30: 376–410.

    Google Scholar 

  • Correll, D.S., 1962. The potato and its wild relatives. Texas Research Foundation, Renner, Texas. 606 pp.

    Google Scholar 

  • Dane, F., D.W. Denna & T. Tsuchiya, 1980. Evolutionary studies of wild species in the genus Cucumis. Z. Pflanzenzüchtg. 85: 89–109.

    Google Scholar 

  • Dhaliwal, H.S., 1977. Basis of difference between reciprocal crosses involving Triticum boeoticum and T. urartu. Theor. Appl. Genet. 49: 283–286.

    Google Scholar 

  • Dweikat, I.M. & P.M. Lyrene, 1988. Production and viability of unreduced gametes in triploid interspecific blueberry hybrids. Theor. Appl. Genet. 76: 555–559.

    Google Scholar 

  • Ehlenfeldt, M.K., 1984. The genetics and manipulation of quantitative factors controlling endosperm development. Ph.D. Thesis. University of Wisconsin-Madison. 184 pp.

  • Ehlenfeldt, M.K. & R.E. HannemanJr., 1984. The use of Endosperm Balance Number and 2n gametes to transfer exotic germplasm in potato. Theor. Appl. Genet. 68: 155–161.

    Google Scholar 

  • Ehlenfeldt, M.K. & R.E. HannemanJr., 1988a. The transfer of the synaptic gene (sy-2) from the 1EBN Solanum commersonii Dun. to 2EBN germplasm. Euphytica 37: 181–187.

    Google Scholar 

  • Ehlenfeldt, M.K. & R.E. HannemanJr., 1988b. Genetic control of Endosperm Balance Number (EBN)—Three additive loci in a threshold system. Theor. Appl. Genet. 75: 825–832.

    Google Scholar 

  • Ehlenfeldt, M.K. & R.E. HannemanJr., 1992. Endosperm dosage requirements in Lycopersicon. Theor. Appl. Genet. 83: 367–372.

    Google Scholar 

  • Grant, V., 1971. Plant speciation. Columbia University Press, New York. 435 pp.

    Google Scholar 

  • Harlan, J.R. & J.M.J.de Wet, 1975. On O. Winge and a prayer: the origins of polyploidy. Bot. Rev. 41: 361–389.

    Google Scholar 

  • Hawkes, J.G., 1962. The origin of Solanum juzepczukii Buk. and S. × curtilobum Juz. et Buk. Z. Pflanzenzücht. 47: 1–14.

    Google Scholar 

  • Hawkes, J.G., 1979. Evolution and polyploidy in potato species. In: J.G. Hawkes, R.N. Lester & A.D. Skelding (Eds.). The biology and taxonomy of the Solanaceae. Academic Press, London. pp. 637–646.

    Google Scholar 

  • Hawkes, J.G., 1990. The potato: evolution, biodiversity and genetic resources. Bellhaven Press, London.

    Google Scholar 

  • Hermsen, J.G.Th. & L.M. Taylor, 1979. Successful hybridization of non-tuberous Solanum tuberosum Lind. and tuberbearing S. pinnatisectum Dun. Euphytica 28: 1–7.

    Google Scholar 

  • International Potato Center, 1988. Annual Report CIP 1988. Lima, Peru.

  • Irikura, Y., 1968. Studies on interspecific crosses of tuber-bearing Solanums. I. Overcoming and cross-incompatibility between Solanum tuberosum and other Solanum species by means of induced polyploids and haploids. Res. Bull. Hokkaido Nat. Agr. Exp. Sta. 92: 23–27.

    Google Scholar 

  • Iwanaga, M. & S.J. Peloquin, 1982. Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theor. Appl. Genet. 61: 161–169.

    Google Scholar 

  • Johnston, S.A., 1980. The role and nature of genic balance in endosperm development. Ph.D. Thesis. University of Wisconsin-Madison.

  • Johnston, S.A. & R.E. HannemanJr., 1980. Support of the Endosperm Balance Number hypothesis utilizing some tuber-bearing Solanum species. Amer. Potato J. 57: 7–14.

    Google Scholar 

  • Johnston, S.A. & R.E. HannemanJr., 1982. Manipulations of Endosperm Balance Number overcome crossing barriers between diploid Solanum species. Science 217: 446–448.

    Google Scholar 

  • Johnston, S.A., T.P.M.den Nijs, S.J. Peloquin & R.E. HannemanJr., 1980. The significance of genetic balance to endosperm development in interspecific crosses. Theor. Appl. Genet. 57: 5–9.

    Google Scholar 

  • Jones, K. & M. Borrill, 1962. Chromosomal status, gene exchange and evolution in Dactylis. III. The role of interploid hybrids. Genetica 32: 296–322.

    Google Scholar 

  • Kermicle, J.L., 1978. Imprinting of gene action in maize endosperm. In: D.B. Walden (Ed.). Maize breeding and genetics. John Wiley and Sons, New York. pp. 357–371.

    Google Scholar 

  • Lesins, K., 1961. Interspecific crosses involving alfalfa. I. Medicago dzhawakhetica (Bordz.) Vass. × M. sativa L. and its peculiarities. Can. J. Genet. Cytol. 3: 135–152.

    Google Scholar 

  • Lin, B.Y., 1984. Ploidy barrier to endosperm development in maize. Genetics 107: 103–115.

    Google Scholar 

  • MacKey, J., 1970. Significance of mating system for chromosome and gametes in polyploids. Hereditas 66: 165–176.

    Google Scholar 

  • Maizonnier, D., 1976. Production de tetraploides et de trisomiques naturels chez le Petunia. Annales de 1′ Ammélioration des Plantes 26: 305–318.

    Google Scholar 

  • Marks, G.E., 1966. The origin and significance of intraspecific polyploidy: Experimental evidence from S. chacoense. Evolution 20: 552–557.

    Google Scholar 

  • McCoy, T.J. & L.Y. Smith, 1983. Genetics, cytology and crossing behavior of an alfalfa (Medicago sativa) mutant resulting in failure of the postmeiotic cytokinesis. Can. J. Genet. Cytol. 25: 390–397.

    Google Scholar 

  • Mendiburu, A.O. & S.J. Peloquin, 1977. Bilateral sexual polyploidization in potatoes. Euphytica 26: 573–583.

    Google Scholar 

  • Muntzing, A., 1930. Über Chromosomenvermehrung in Galeopsis-Kreuzungen und ihre phylogenetische Bedeutung. Hereditas 14: 153–172.

    Google Scholar 

  • Negri, V. & F. Veronesi, 1989. Evidence for the existence of 2n gametes in Lotus tenuis Wald. et Kit. (2n=2x=12); their relevance in evolution and breeding of Lotus corniculatus L. (2n=4x=24). Theor. Appl. Genet. 78: 400–404.

    Google Scholar 

  • Nijs, T.P.M.den & S.J. Peloquin, 1977. 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26: 585–600.

    Google Scholar 

  • Nishiyama, I. & T. Yabuno, 1978. Causal relationships between the polar nuclei in double fertilization and interspecific cross-incompatibility in Avena. Cytologia 43: 453–466.

    Google Scholar 

  • Parrott, W.A. & R.R. Smith, 1984. Production of 2n pollen in red clover. Crop Sci. 24: 469–472.

    Google Scholar 

  • Peloquin, S.J. & Rodomiro Ortiz, 1992. Techniques for introgressing unadapted germplasm to breeding populations. In: H.T. Stalker (Ed.). Plant Breeding in the 1990s. CAB International. In press.

  • Ramanna, M.S. & J.G.Th. Hermsen. 1982. Gene transfer from non-tuberous to tuberous Solanum species: evidence from meiosis in hybrids. Euphytica 31: 565–572.

    Google Scholar 

  • Regal, P.J., 1977. Ecology and evolution of flowering plant dominance. Science 196: 622–629.

    Google Scholar 

  • Shii, C.T., A. Rabakoarihanta, M.C. Mok & D.W.S. Mok, 1982. Embryo development in reciprocal crosses of Phaseolus vulgaris L. and P. coccineus Lam. Theor. Appl. Genet. 62: 59–64.

    Google Scholar 

  • Simon, P.W. & S.J. Peloquin, 1976. Pollen vigor as a function of mode of 2n gamete formation in potatoes. J. Hered. 67: 204–208.

    Google Scholar 

  • Stebbins, G.L., 1976. Seeds, seedlings and the origin of the angiosperm. In: C.B. Beck (Ed.). Origin and early evolution of angiosperms. Columbia Univ. Press, New York. pp. 300–311.

    Google Scholar 

  • Stephens, S.G., 1942. Colchicine-produced polyploids in Gossypium. An autotetraploid asiatic cotton and certain of its hybrids with diploid species. J. Genet. 44: 272–295.

    Google Scholar 

  • Van Santen, R., 1988. Germplasm transfer in Dactylis L. Ph.D. Thesis. University of Wisconsin-Madison.

  • Veronesi, F., A. Mariani & E.T. Bingham, 1986. Unreduced gametes in diploid Medicago and their importance in alfalfa breeding. Theor. Appl. Genet. 72: 37–41.

    Google Scholar 

  • von Wangenheim, K.H., 1955. Zur Ursache der Kreuzungs-schwierigkeiten zwischen Solanum tuberosum L. und S. acaule Bitt. bzw. S. stoloniferum Schectd et Bouche. Z. Pflanzenzücht. 34: 7–48.

    Google Scholar 

  • Watanabe, K., 1988. Frequency, cytology and genetics of 2n pollen and sexual polyploidization in tuber-bearing Solanum. Ph.D. Thesis. University of Wisconsin-Madison.

  • Watanabe, K. & S.J. Peloquin, 1988. Occurrence of 2n pollen and ps gene frequencies in cultivated groups and their related wild species in tuber-bearing Solanums. Theor. Appl. Genet. 78: 329–336.

    Google Scholar 

  • Zhang, E. & R.G. Palmer, 1990. The ms mutation in soybean: involvement of gametes in crosses with tetraploid soybeans. Theor. Appl. Genet. 80: 172–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ortiz, R., Ehlenfeldt, M.K. The importance of Endosperm Balance Number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60, 105–113 (1992). https://doi.org/10.1007/BF00029665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029665

Key words

Navigation