Skip to main content
Log in

Forty-five years of developmental biology of photosynthetic bacteria

  • Personal Perspective/Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Developmental biology and cell differentiation of photosynthetic prokaryotes are less noticed fields than the showpieces of eukaryotes, e.g. Drosophila melanogaster. The large metabolic versatility of the facultative purple bacteria and their great capability to adapt to different ecological conditions, however, aroused the inquisitiveness to investigate the process of cell differentiation and to use these bacteria as model system to study structure, function and biosynthesis of the photosynthetic apparatus. The great progress in research in this field paved the way to study principal mechanisms of cellular organization and differentiation in these bacteria. In this article, the history of the research on membrane structure and development of anoxygenic photosynthetic prokaryotes during the last 45 years is described. A personal account of how I entered the field through research on the phototaxis of cyanobacteria is given. Intracytoplasmic membranes (ICM) were detected by electron microscopy in cyanobacteria and in purple non-sulfur bacteria. The formation of ICM by invagination of the cytoplasmic membrane in purple bacteria was observed for the first time. Investigations on the effect of changes in oxygen tension and light intensity on the formation of pigments and intracytoplasmic membranes followed. The isolation, purification, and analysis of light-harvesting complexes and of pigment-binding proteins was the next step of our research. Lipopolysaccharides and peptidoglycans were detected and analyzed in the outer membrane of photosynthetic bacteria. Functional membrane differentiation includes variations in the rates of photophosphorylation and electron transport. Molecular genetic approaches have initiated the investigation of transcriptional regulation and the analysis of correlation between pigment and protein synthesis. Molecular analysis of assembly of light-harvesting complexes and membrane differentiation are the present aspects of our research. Cell differentiation has been considered under evolutionary view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BChl:

bacteriochlorophyll

CM:

cytoplasmic membrane

ICM:

intracytoplasmic membrane

LH:

light-harvesting

RC:

photochemical reaction center

Rba. :

Rhodobacter

Rsp. :

Rhodospirillum

Rps. :

Rhodopseudomonas

References

  • Allen JP, Feher G, Yeates TO, Komiya H and Rees DC (1988) Structure of the reaction center from Rhodobacter sphaeroides. Proc. Natl Acad Sci USA 85: 8487–8491

    Google Scholar 

  • Amesz J (1991) Green photosynthetic bacteria and heliobacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 99–119. Academic Press, New York

    Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature (London) 184: 10–21

    Google Scholar 

  • Arnon DI, Allen MB and Whatley FR (1954) Photosynthesis by isolated chloroplasts. Nature (London) 174: 394–396

    Google Scholar 

  • Baccarini-Melandri A, Gest H and San Pietro A (1970) A coupling factor in bacterial photophosphorylation. J Biol Chem 245: 1224–1226

    Google Scholar 

  • Bauer CE (1995) Regulation of photosynthesis gene expression. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1221–1234. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bauer CE, Young DY and Marrs BL (1988) Analysis of the Rhodobacter capsulatus puf operon: Location of the oxygen-regulated promoter region and the identification of an additional puf-encoded gene. J Biol Chem 263: 4820–4827

    Google Scholar 

  • Bauer CE, Buggy JJ, Yang Z and Marrs BL (1991) The superoperonal organization of genes for pigment biosynthesis and reaction center proteins is a conserved feature in Rhodobacter capsulatus: Analysis of overlapping bchB and puhA transcripts. Mol Gen Genet 228: 438–444

    Google Scholar 

  • Beatty JT (1995) Organization of Photosynthesis gene transcripts. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1209–1219. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beck J and Drews G (1982) Tetrapyrrole derivatives shown by fluorescence emission and excitation spectroscopy in cells of Rba. capsulatus adapting to phototrophic conditions. Z Naturforsch 37c: 199–204

    Google Scholar 

  • Belanger G, Bérard J, Corriveau P and Gingras G (1988) The structural genes coding for the L and M subunits of R. rubrum photoreaction center. J Biol Chem 263: 7632–7638

    Google Scholar 

  • Biedermann M and Drews G (1968) Trennung der Thylakoid-bausteine einiger Athiorhodaceae durch Gelelektrophorese. Arch Mikrobiol 61: 48–58

    Google Scholar 

  • Biedermann M, Drews G, Marx R and Schröder J (1967) Der Einfluß des Sauerstoffpartialdruckes und der Antibiotica Actinomycin und Puromycin auf das Wachstum, die Synthese von Bacteriochlorophyll und die Thylakoid Morphogenese in Dunkelkulturen von Rhodospirillum rubrum. Arch Mikrobiol 56: 133–147

    Google Scholar 

  • Biel AJ (1995) Genetic analysis and regulation of bacteriochlorophyll biosynthesis. In: Blankenship RE, Madigan MLT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1125–1134. Kluwer Academic, Publishers Dordrecht

    Google Scholar 

  • Blankenship RE, Olson JM and Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 399–435. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boatman ES (1964) Observations on the fine structure of spheroplasts of Rhodospirillum rubrum. J Cell Biol 20: 297–311

    Google Scholar 

  • Boonstra AF, Germeroth L and Boekema EJ (1994) Structure of the light-harvesting antenna from Rhodospirillum molischianum studied by electron microscopy. Biochim Biophys Acta 1184: 227–234

    Google Scholar 

  • Brand M (1995) Einfluß von Pigment Biosynthese und Phosphorylierung auf den Einbau und die Assemblierung der pigment-bindenden Proteine in die Membran von Rba. capsulatus. PhD thesis, Freiburg

  • Brand M, Garcia AF, Pucheu N, Meryandini A, Kerber N, Tadros MH and Drews G (1995) Phosphorylation of the light-harvesting polypeptide LH I of Rhodobacter capsulatus at serine after membrane insertion under chemotrophic and phototrophic growth conditions. Biochim Biophys Acta 1231: 169–175

    Google Scholar 

  • Bril C (1960) Studies on bacterial chromatophores. I. Reversible disturbance of transfer of electronic excitation energy between bacteriochlorophyll types in Chromatium. Biochim Biophys Acta 39: 296–303

    Google Scholar 

  • Bull MJ and Lascelles J (1963) The association of protein synthesis with the formation of pigments in some photosynthetic bacteria. Biochem J 87: 15–28

    Google Scholar 

  • Caffrey MS, Bartsch RG and Cusanovich MA (1992) Study of cytochrome c 2-reaction center interaction by site-directed mutagenesis. J Biol Chem 267: 6317–6321

    Google Scholar 

  • Chailakhyan LM, Glagoleo AN, Glagoleva TN, Murvahidze GV, Potapova TV and Skulachev VP (1982) Intercellular power transmission along trichomes of cyanobacteria. Biochim Biophys Acta 679: 60–67

    Google Scholar 

  • Clayton RK (1962) Primary reactions in bacterial photosynthesis. The nature of light-induced absorbance changes in chromatophores; evidence for a special bacteriochlorophyll. Photochem Photobiol 1: 201–210

    Google Scholar 

  • Clayton RK (1963) Towards the isolation of a photochemical reaction center in Rhodopseudomonas sphaeroides. Biochim Biophys Acta 75: 312–323

    Google Scholar 

  • Clayton RK (1966) Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem Photobiol 5: 669–677

    Google Scholar 

  • Clayton RK and Clayton BJ (1972) Relations between pigments and proteins in the photosynthetic membranes of Rps sphaeroides. Biochim Biophys Acta 283: 492–504

    Google Scholar 

  • Clayton RK and Haselkorn R (1972) Protein components of bacterial photosynthetic membranes. J Mol Biol 68: 97–105

    Google Scholar 

  • Clayton RK and Wang RT (1971) Photochemical reaction centers from Rps. sphaeroides. Methods Enzymol 23: 696–704

    Google Scholar 

  • Cogdell RJ and Thornber JP (1980) Light-harvesting pigment-protein complexes of purple photosynthetic bacteria. FEBS Lett 122: 1–8

    Google Scholar 

  • Cohn F (1866) Über die Gesetze der Bewegung der mikroskopischen Pflanzen und Tiere unter dem Einfluß des Lichtes. Hedwigia 5: 161–166

    Google Scholar 

  • Cohen-Bazire G (1963) Some observations on the organization of the photosynthetic apparatus in purple and green bacteria. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis, pp 89–114. The Antioch Press, Yellow Springs, OH

    Google Scholar 

  • Cohen-Bazire G and Kumisawa R (1960) Some observations on the synthesis and function of the photosynthetic apparatus in Rhodospirillum rubrum. Proc Natl Acad Sci USA 46: 1543–1553

    Google Scholar 

  • Cohen-Bazire G and Kunisawa R (1963) The fine structure of Rhodospirillum rubrum. J Cell Biol 16: 401–419

    Google Scholar 

  • Cohen-Bazire G, Sistrom WR and Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 49: 25–68

    Google Scholar 

  • Cohen-Bazire G, Pfennig N and Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22: 207–225

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1984) X ray structure analysis of a membrane protein complex. J Mol Biol 180: 385–398

    Google Scholar 

  • Deisenhofer J, Epp O, Miki K, Huber R and Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution. Nature 318: 618–624

    Google Scholar 

  • Dierstein R (1983) Biosynthesis of pigment-protein complex polypeptides in bacteriochlorophyll-less mutant cells of Rps. capsulata. FEBS Lett 160: 281–286

    Google Scholar 

  • Dierstein R and Drews G (1974) Nitrogen-limited continuous culture of Rps. capsulata growing photosynthetically or heterotrophically at low oxygen tensions. Arch Microbiol 99: 117–128

    Google Scholar 

  • Dierstein R and Drews G (1986) Effect of uncoupler on assembly pathway for pigment-binding protein of bacterial photosynthetic apparatus. J Bacteriol 168: 167–172

    Google Scholar 

  • Dierstein R, Schumacher A and Drews G (1981) On insertion of pigment-associated polypeptides during membrane biogenesis in Rps. capsulata. Arch Microbiol 128: 376–383

    Google Scholar 

  • Dörge B, Klug G, Gad'on N, Cohen SN and Drews G (1990) Effects on the formation of antenna complex B870 of Rhodobacter capsulatus by exchange of charged amino acids in the N-terminal domain of the α and β pigment-binding proteins. Biochemistry 29: 7754–7758

    Google Scholar 

  • Doi M, Shioi Y, Gad'on N, Golecki JR and Drews G (1991) Spectroscopical studies on the light-harvesting complex II from darkaerobic and light-anaerobic grown cells of Rhodobacter sulfidophilus. Biochim Biophys Acta 1058: 235–241

    Google Scholar 

  • Donohue TJ, Kiley PJ and Kaplan S (1988) The puf operon of Rhodobacter sphaeroides. Photosynthe Res 19: 39–61

    Google Scholar 

  • Drews G (1959) Beiträge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen. Arch Protistenkd 104: 389–430

    Google Scholar 

  • Drews G (1960a) Untersuchungen zur Substruktur der Chromatophoren von Rhodospirillum rubrum und Rsp. molischianum. Arch Mikrobiol 36: 99–108

    Google Scholar 

  • Drews G (1960b) Untersuchungen zum Polyphosphatstoffwechsel und der Bildung metchromatischer Granula bei Mycobacterium phlei. Arch Mikrobiol 36: 387–430

    Google Scholar 

  • Drews G (1960c) Elektronenmikroskopische Untersuchungen an Mycobacterium phlei. Arch Mikrobiol 35: 53–62

    Google Scholar 

  • Drews G (1962) Physiologische Untersuchungen an den Chromatophoren von Rhodospirillum molischianum. Ber dtsch Bot Ges 75: 338–344

    Google Scholar 

  • Drews G (1964) Untersuchungen zur Photophosphorylierung bei R. molischianum und R. rubrum. Arch Mikrobiol 48: 122–135

    Google Scholar 

  • Drews G (1964) Untersuchungen zur Regulation der Bacteriochlorophyll Synthese bei R. rubrum. Arch Mikrobiol 51: 186–198

    Google Scholar 

  • Drews G (1973) Fine structure and chemical composition of the cell envelopes. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 99–116. Blackwell Science Publishers, Oxford

    Google Scholar 

  • Drews G (1978) Structure and development of the membrane system of photosynthetic bacteria, In: Sanada DR and Vemon LP (s) Current Topics in Bioenergetics, Vol 8, pp 161–207. Academic Press, New York

    Google Scholar 

  • Drews G (1981) Rhodospirillum salexigens, spec. nov. an obligatory halophilic phototrophic bacterium. Arch Microbiol 130: 325–327

    Google Scholar 

  • Drews G (1985) Structure and functional organization of light-harvesting complexes and photochemical reaction centers in membranes of phototrophic bacteria. Microbiol Rev 49: 59–70

    Google Scholar 

  • Drews G and Dawes EA (eds) (1990) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria. Plenum Press, New York

    Google Scholar 

  • Drews G and Giesbrecht P (1963) Zur Morphogenese der Bakterien Chromatophoren und zur Synthese des Bakteriochlorophylls bei Rhodopseudomonas sphaeroides und Rhodospirillum rubrum. Zbl Bakt Parasitenkd Infektionskrankh und Hyg I Orig 190: 508–536

    Google Scholar 

  • Drews G and Giesbrecht P (1965) Die Thylakoidstrukturen von Rhodopseudomonas spec. Arch Mikrobiol 52: 242–250

    Google Scholar 

  • Drews G and Giesbrecht P (1966) Rhodopseudomonas viridis, nov. spec., ein neu isoliertes, obligat phototrophes Bakterium. Arch Mikrobiol 53: 255–162

    Google Scholar 

  • Drews G and Golecki JR (1982) Supramolecular organization and composition of membranes. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 125–141. Blackwell Science Publishers, Oxford

    Google Scholar 

  • Drews G and Golecki JR (1995) Structure, molecular organization, and biosynthesis of membranes of purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 231–257. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Drews G and Gollwitzer W (1965) Untersuchungen an der Polysaccharidfraktion der Zellwände von Anacystis nidulans. Arch Mikrobiol 51: 179–185

    Google Scholar 

  • Drews G and Jäger K (1963) Influence of light on the biosynthesis of bacteriochlorophyll by Rhodopseudomonas capsulata. Nature 199: 1112–1113

    Google Scholar 

  • Drews G and Meyer H (1964) Untersuchungen zum chemischen Aufbau der Zellwände von Anacystis nidulans und Chlorogloea fritschii. Arch Mikrobiol 48: 259–267

    Google Scholar 

  • Drews G and Niklowitz W (1956) Zentroplasma und granuläre Einschlüsse von Phormidium uncinatum. Arch Mikrobiol 24: 147–162

    Google Scholar 

  • Drews G and Niklowitz W (1957) Untersuchungen über die granulären Einschlüsse der Hormogonales. Arch Mikrobiol 25: 333–351

    Google Scholar 

  • Drews G and Oelze J (1981) Organization and differentiation of membranes of photosynthetic bacteria. Adv Microb Physiol 22: 1–92

    Google Scholar 

  • Drews G and Weckesser J (1982) Function, structure and composition of cell walls and external layers. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 333–357. Blackwell Scientific Publishers, Oxford

    Google Scholar 

  • Drews G, Prauser H and Uhlmann D (1961) Massenvorkommen von Synechococcus plancticus nov. spec. einer solitären planktischen Cyanophycee in einem Abwasserteich. Arch Mikrobiol 39: 101–115

    Google Scholar 

  • Drews G, Lampe HH and Ladwig R (1969) Die Entwicklung des Photosyntheseapparates in Dunkelkulturen von Rps. capsulata. Arch Mikrobiol 65: 12–28

    Google Scholar 

  • Drews G, Leutiger I and Ladwig R (1971) Production of protochlorophyll, protochlorophytin and bacteriochlorophyll by mutant A la of Rps. capsulata. Arch Mikrobiol 76: 349–363

    Google Scholar 

  • Drews G, Dierstein R and Schumacher A (1976) Genetic transfer of the capacity to form bacteriochlorophyll-protein complexes in Rps. capsulata. FEBS Lett 68: 132–136

    Google Scholar 

  • Drews G, Weckesser J and Mayer LH (1978) Cell envelopes. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 61–77. Plenum Press. New York

    Google Scholar 

  • Drews G, Ziser K, Schröck-Vietor V and Golecki JR (1988) Cellular responses of soybean to virulent and avirulent strains of Pseudomonas syringae, pv. glycinea. Europ J Cell Biol 46: 369–375

    Google Scholar 

  • Drews G, Hüdig H, Mäntele W Müller M, Oelze J, Weckesser J and Welte W (eds) (1987) Workshop on Structure, Function and Formation of Membrane-bound Complexes in Phototrophic Bacteria. Abstract, Freiburg.

  • Duysens LNM (1951) Transfer of light energy within the pigment systems in photosynthetic cells. Nature (London) 168: 548–550

    Google Scholar 

  • Duysens LMN (1952) Transfer of excitation in photosynthesis. Thesis Utrecht

  • Duysens LNM, Huiskamp WJ, Vos JJ and van der Hart JM (1956) Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim Biophys Acta 19: 188–190

    Google Scholar 

  • Eimhjellen KE (1970) Thiocapsa pfennigii spec. nov. Arch Mikrobiol 73: 194–194

    Google Scholar 

  • Eimhjellen KE, Steensland LH and Traetteberg LJ (1967) A Thiococcus nov. spec. gen., its pigments and internal membrane system. Arch Mikrobiol. 59: 82–92

    Google Scholar 

  • Engelmann Th W (1988) Über Bacteriopurpurin und seine physiologische Bedeutung. II. Über Blutfarbstoff als Mittel zur Untersuchung des Gaswechsels Chromophyll-haltiger Pflanzen im Licht und Dunkel. Archiv für die gesamte Physiologie des Menschen und der Tiere 42: 183–188

    Google Scholar 

  • Erasco JM and Kaplan S (1995) Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: A mutant histidine kinase. J Bacteriol 177: 2695–2706

    Google Scholar 

  • Esmarch E (1887) Über die Reinkultur eines Spirillum. Centralbl Bacteriol Parasitenkd 1: 225–230

    Google Scholar 

  • Famintzin A (1867) Die Wirkung des Lichtes auf Algen. Pringsheim Jb 6: 1–54

    Google Scholar 

  • Feick R and Drews G (1978) Isolation and characterization of light-harvesting bacteriochlorophyll complexes from Rps. capsulata. Biochim Biophys Acta 501: 499–513

    Google Scholar 

  • Feick R and Drews G (1979) Protein subunits of bacteriochlorophylls B802 and B855 of the light-harvesting complex II of Rps. capsulata. Z Naturfschg 34c: 196–199

    Google Scholar 

  • Feher G and Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 349–386. Plenum Press, New York

    Google Scholar 

  • Feiler U and Hauska G (1995) The reaction center from green sulfur bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 665–685. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Firsow NN and Drews G (1977) Differentiation of the intracytoplasmic membrane from Rhodopseudomonas palustris induced by variations of oxygen partial pressure or light intensity. Arch Microbiol 115: 299–306

    Google Scholar 

  • Foidl M, Golecki JR and Oelze J (1994) Bacteriochlorphyll c formation and chlorosome development in Chloroflexus aurantiacus. Photosynth Res 41: 145–150

    Google Scholar 

  • Fraker PJ and Kaplan S (1972) Isolation and characterization of a bacteriochlorophyll-containing protein from Rps. sphaeroides. J Biol Chem 247: 2732–2737

    Google Scholar 

  • Frank H, Lefort M and Martin HH (1962) Elektronenoptische und chemische Untersuchungen an Zellwänden der Blaualge Phormidium uncinatum. Z Naturforsch 17b: 262–268

    Google Scholar 

  • French CS (1938) The chromoproteins of photosynthetic purple bacteria. Science 88: 60–62

    Google Scholar 

  • Frenkel AW (1954) Light-induced phosphorylation by cell-free extracts of photosynthetic bacteria. J Am Chem Soc 76: 5568–5569

    Google Scholar 

  • Frenkel AW (1956) Photophosphorylation of adenine nucleotides by cell-free preparations of purple bacteria. J Biol Chem 222: 823–834

    Google Scholar 

  • Frenkel AW (1959) Light-induced reactions of bacterial chromatophores and their relation to photosynthesis. Annu Rev Plant Physiol 10: 53–70

    Google Scholar 

  • Frey-Wyssling A and Mühlethaler K (1949) Über den Feinbau der Chlorophyllkörner. Vjschr Naturforsch Ges Zürich 94: 179–183

    Google Scholar 

  • Garcia AF and Drews G (1980) Characterization of three membrane fractions isolated from cells of Rps. capsulata adapting from chemotrophic to phototrophic conditions. Arch Microbiol 127: 157–161

    Google Scholar 

  • Garcia AF, Vernon LP and Mollenhauer H (1966) Properties of Chromatium subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 5: 2399–2407

    Google Scholar 

  • Garcia AF, Vernon LP, Ke B and Mollenhauer H (1968) Some structural and photochemical properties of Rhodopseudomonas spec. NHTC 133 subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 7: 326–332

    Google Scholar 

  • Garcia AF, Reidl H and Drews G (1985) Efficiency of light conversion in photophosphorylation measured in chromatophores fused with liposomes and treated with inhibitors. Biochim Biophys Acta 808: 180–185

    Google Scholar 

  • Garcia AF, Venturoli G, Gad'on N, Fernandez-Velasco JG, Melandri BA and Drews G (1987) The adaptation of the electron transfer chain of Rps. capsulata to different light intensities. Biochim Biophys Acta 890: 335–345

    Google Scholar 

  • Gest H (1994) A microbiologist's odyssee: Bacterial viruses to photosynthetic bacteria. Photosynth Res 40: 129–146

    Google Scholar 

  • Gest H, San Pietro A and Vernon LP (eds) (1963) Bacterial Photosynthesis. The Antioch Press, Yellow Springs, OH

    Google Scholar 

  • Giesbrecht P and Drews G (1962) Elektronenmikroskopische Untersuchungen über die Entwicklung der Chromatophoren von Rsp. molischianum. Arch Mikrobiol 43: 152–161

    Google Scholar 

  • Giesbrecht P and Drews G (1996) Über die Organisation und die makromolekulare Architektur der Thylakoide ‘lebender’ Bakterien. Arch Mikrobiol 54: 297–330

    Google Scholar 

  • Ghosh R, Hauser H and Bachofen R (1988) Reversible dissociation of B873 light-harvesting complex from Rsp. rubrum G9. Biochemistry 27: 1004–1014

    Google Scholar 

  • Gloe A, Pfenning N, Brockmann H and Trowitsch W (1975) A new bacteriochlorophyll from brown-colored chlorobiaceae. Arch Microbiol 102: 103–109

    Google Scholar 

  • Gober JW and Marques MV (1995) Regulation of cellular differentiation in Caulobacter crescentus. Microbiol Rev 59: 31–47

    Google Scholar 

  • Golecki JR and Drews G (1980) Cellular organization of the halophilic phototrophic bacterium strain WS 68. Eur J Cell Biol 22: 654–660

    Google Scholar 

  • Golecki JR and Drews G (1982) Supramolecular organization and composition of membranes. In: Carr NG and Whitton BA (eds) The Biology of the Cyanobacteria, pp 125–141. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Golecki JR and Oelze J (1975) Quantitative determination of cytoplasmic membrane invaginations in phototrophically growing Rsp. rubrum. J Gen Microbiol 88: 253–258

    Google Scholar 

  • Golecki JR and Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus auratiacus. Arch Microbiol 148: 236–241

    Google Scholar 

  • Golecki JR, Tadros MH, Ventura S and Oelze J (1989) Intracytoplasmic membrane vesiculation in light-harvesting mutants of Rba. sphaeroides and Rba. capsulatus. FEMS Microbiol Lett 65: 315–318

    Google Scholar 

  • Golecki JR, Ventura S and Oelze J (1991) The architecture of unusual membrane tubes in the B800–850 light-harvesting bacteriochlorophyll-deficient mutant 19 of Rba. sphaeroides. FEMS Microbiol Lett 77: 335–340

    Google Scholar 

  • Gomelsky M and Kaplan S (1995) appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 172: 4609–4618

    Google Scholar 

  • Griffiths M, Sistrom WR, Cohen-Bazire G and Stanier RY (1955) Function of carotenoids in photosynthesis. Nature 176: 1211–1214

    Google Scholar 

  • Guner S, Willie A, Millet F, Caffrey MS, Cusanovich MA, Robertson DE and Knaff DB (1993) The interaction between cytochrome c2 and the cytochrome bc 1-complex in the photosynthetic purple bacteria Rba. capsulatus and Rps. virldis. Biochemistry 32: 4793–4800

    Google Scholar 

  • Harashima K, Shiba T and Murata N (1989) Aerobic Photosynthetic Bacteria. Springer Verlag, Berlin, Heidelberg

    Google Scholar 

  • Harder H (1918) Über die Bewegung der Nostocaceen. Ztschr Bot 10: 177–244

    Google Scholar 

  • Harder H (1920) Über die Bewegung frei beweglicher pflanzlicher Organismen. Ztschr Bot 12: 353–462

    Google Scholar 

  • Harold FM (1995) From morphogenes to morphogenesis. Microbiology 141: 2765–2778

    Google Scholar 

  • Holt SC and Marr AG (1965a) Location of chlorophyll in Rsp. rubrum. J Bacteriol 89: 1402–1412

    Google Scholar 

  • Holt SC and Marr AG (1965b) Effect of light intensity on the formation of intracytoplasmic membrane in Rsp. rubrum. J Bacteriol 89: 1421–1429

    Google Scholar 

  • Holzwarth AR and Schaffner K (1994) On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study. Photosynth Res 41: 225–233

    Google Scholar 

  • Hornberger U, Liebetanz R, Tichy H-V and Drews G (1990) Cloning and sequencing of the hemA gene of Rhodobacter capsulatus. and isolation of a δ-aminolevulinate-dependent mutant strain. Mol Gen Genet 221: 371–378

    Google Scholar 

  • Hornberger U, Wieseler B and Drews G (1991) Oxygen tension regulated expression of the hemA gene of Rba. capsulatus. Arch Microbiol 156: 129–134

    Google Scholar 

  • Hüdig H, Stark G and Drews G (1987) The regulation of cytochrom c oxidase of Rhodobacter capsulatus by light and oxygen. Arch Microbiol 149: 12–18

    Google Scholar 

  • Hunter CN (1988) Transposon Tn5 mutagenesis of genes encoding reaction centre and light-harvesting I polypeptides of Rba. sphaeroides. J Gen Microbiol 134: 1481–1489

    Google Scholar 

  • Hunter CN (1995) Genetic manipulation of the antenna complexes of purple bacteria. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 473–501. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hunter CN, Holmes NG, Jones OTG and Niederman RA (1979) Membranes of Rps. sphaeroides. VII Photochemical properties of a fraction enriched in newly synthesized bacteriochlorophyll-protein complexes. Biochim Biophys Acta 548: 253–266

    Google Scholar 

  • Hunter CN, Pennoyer JD, Sturgis JN, Farelly D and Niederman RA (1988) Oligomerization states and associations of light-harvesting pigment-protein complexes of Rba. sphaeroides as analyzed by lithium dodecyl sulfate polyacrylamide gel electrophoresis. Biochemistry 27: 3459–3467

    Google Scholar 

  • Hurlbert RE, Golecki JR and Drews G (1974) Isolation and characterization of Chromatium vinosum membranes. Arch Microbiol 101: 169–186

    Google Scholar 

  • Huzisige H and Ke B (1993) Dynamics of the history of photosynt research. Photosynth Res 38: 185–209

    Google Scholar 

  • Inoue K, Kouadio J-LK, Mosley CS and Bauer CE (1995) Isolation and in vitro phosphorylation of sensory transduction components controlling anaerobic induction of light harvesting and reaction center gene expression in Rhodobacter capsulatus. Biochemistry 34: 391–396

    Google Scholar 

  • Jay F, Lambilotte M and Mühlethaler K (1983) Localization of Rhodopseudomonas viridis reaction centre and light-harvesting proteins using ferritin-antibody labelling. Eur J Cell Biol 30: 1–8

    Google Scholar 

  • Jensen A, Aasmundrud O and Eimhijellen KE (1964) Chlorophylls of photosynthetic bacteria. Biochim Biophys Acta 88: 466–479

    Google Scholar 

  • Jürgens U and Weckesser J (1986) Polysaccharide covalently linked to the peptidoglycan on Synechocystis spec. strain PCC 6714. J Bacteriol 168: 568–573

    Google Scholar 

  • Jürgens UJ, Drews G and Weckesser J (1983) Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp- strain PCC 6714. J Bacteriol 154: 471–478

    Google Scholar 

  • Kamen MD (1980) A capful of luck, a pinch of sagacity. Annu Rev Biochem 55: 1–34

    Google Scholar 

  • Kaplan S (1978) Control and kinetics of photosynthetic membrane development. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 809–839. Plenum Press, New York

    Google Scholar 

  • Kaplan NO and Robinson A (eds) (1982) From Cyclotrons to Cytochromes. Essays in Molecular Biology and Chemistry. Academic Press, New York

    Google Scholar 

  • Karrasch S, Bullough PA and Ghosh R (1995) The 8.5 Å projection map of the light-harvesting complex I from Rsp. rubrum reveals a ring composed 16 subunits. EMBO J 14: 631–638

    Google Scholar 

  • Kaufmann N, Hüdig H and Drews G (1984) Transposon Tn5 mutagenesis of genes for the photosynthetic apparatus in Rps. capsulata. Mol Gen Genet 198: 153–158

    Google Scholar 

  • Kiley PJ, Vargat A and Kaplan S (1988) Physiological and structural analysis of light-harvesting mutants of Rba. sphaeroides. J Bacteriol 170: 1103–1115

    Google Scholar 

  • King MT and Drews G (1975) The respiratory electron transport system of heterotrophically grown Rps. palustris. Arch Microbiol 102: 219–231

    Google Scholar 

  • King MT and Drews G (1976) Isolation and partial characterization of the cytochrome oxidase from Rps. palustris. Eur J Biochem 68: 5–12

    Google Scholar 

  • Klug G (1995) Post-transcriptional control of photosynthesis gene expression. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 1235–1244. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Klug G and Cohen SN (1988) Pleiotropic effects of localized Rba. capsulatus puf operon deletions on production of light-absorbing pigment-protein complexes. J Bacteriol 170: 5814–5821

    Google Scholar 

  • Klug G, Kaufmann N and Drews G (1985) Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus: Transcription and assembly in the membrane of Rps. capsulata. Proc Natl Acad Sci USA 82: 6485–6489

    Google Scholar 

  • Klug G, Liebetanz R and Drews G (1986) The influence of bacteriochlorophyll biosynthesis on formation of pigment-binding proteins and assembly of pigment-protein complexes in Rps. capsulata. Arch Microbiol 146: 284–291

    Google Scholar 

  • Klug G, Adams CW, Belasco J, Doerge B and Cohen' SN (1987) Biological consequences of segmental alterations in mRNA stability: Effects of deletion of the intercistronic hairpin loop region of the Rba. capsulatus puf operon. EMBO J 6: 3515–3520

    Google Scholar 

  • Kok B (1961) Partial purification and determination of oxidationreduction potential of the photosynthetic chlorophyll complex absorbing at 700 mμ. Biochim Biophys Acta 48: 527–532

    Google Scholar 

  • Komiya H, Yeates TO, Rees DC, Allen JP and Feher G (1988) Structure of the reaction center from Rba. sphaeroides. Proc. Natl Acad Sci USA 85: 9012–9016

    Google Scholar 

  • Lampe HH and Drews G (1972) Die Differenzierung des Membransystems von Rps. capsulata hinsichtlich seiner photosynthetischen und respiratorischen Funktionen. Arch Mikrobiol 84: 1–19

    Google Scholar 

  • Lang HP and Hunter CN (1994) The relationship between biosynthesis and the assembly of the light-harvesting LH2 complex in Rba. sphaeroides. Biochem J 298: 197–205

    Google Scholar 

  • Lascelles J (1959) Adaptation to form bacteriochlorophyll in Rps. sphaeroides. Biochem J 72: 508–518

    Google Scholar 

  • Lascelles J (1966) The accumulation of bacteriochlorophyll precursors by mutant and wild-type strains of Rps. sphaeroides. Biochem J 100: 175–183

    Google Scholar 

  • Lascelles J (1978) Regulation of pyrrole synthesis. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 795–808. Plenum Press, New York

    Google Scholar 

  • Lascelles J and Altshuler T (1967) Mutant strains of Rps. sphaeroides lacking δ-aminolevulinate synthase. J Bacteriol 98: 721–727

    Google Scholar 

  • Lascelles J and Wertlieb D (1971) Mutant strains of Rps. sphaeroides which form photosynthetic pigments aerobically in the dark. Biochim Biophys Acta 226: 328–340

    Google Scholar 

  • Lee JK and Kaplan S (1995) Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. J Biol Chem 270: 20453–20458

    Google Scholar 

  • Leyon H and von Wettstein D (1954) Der Chromatophoren Feinbau bei den Phaeophyceen. Z Naturfsch 9b: 471–475

    Google Scholar 

  • Liebetanz R, Hornberger U and Drews G (1991) Organization of the genes coding for the reaction centre L and M subunits and B870 antenna polypeptides and from the aerobic photosynthetic bacterium Erythrobacter spec. OCH114. Mol Microbiol 5: 1459–1468

    Google Scholar 

  • Loach PA and Parkes-Loach PS (1995) Structure-function relationship in core light-harvesting complexes as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 437–471. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lommen MAJ and Takemoto J (1978) Ultrastructure of carotenoid mutant strain R-26 of Rps. sphaeroides. Arch Microbiol 118: 305–308

    Google Scholar 

  • Mäntele W, Steck K, Becker A, Wacker T, Welte W, Gad'on N and Drews G (1988) Spectroscopic studies of crystallized pigmentprotein complexes of Rps. palustris. In: Breton J and Verméglio A (eds) Structure of Bacterial Reaction Centers: X-Ray Crystallography and Optical Sectroscopy with Polarized Light. Nato Adv Study Ser A, Vol 149, pp 33–39. Plenum Press, New York

    Google Scholar 

  • Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71: 971–973

    Google Scholar 

  • Marrs BL (1981) Mobilization of the genes for photosynthesis from Rps. capsulata by a promiscuous plasmid. J Bacteriol 146: 1003–1012

    Google Scholar 

  • Marrs BL and Gest H (1973) Regulation of bacteriochlorophyll synthesis by oxygen in respiratory mutants of Rps. capsulata. J Bacteriol 114: 1052–1057

    Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hasthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature (London) 374: 517–521

    Google Scholar 

  • Meadows KA, Iida K, Tsuda K, Recchina PA, Heller BA, Antonio B, Nango M and Loach PA (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: Determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation. Biochemistry 34: 1559–1574

    Google Scholar 

  • Meckenstock RU, Krusche K, Brunisholz RA and Zuber H (1992) The light-harvesting core complex and the B820 subunit from Rps. marina. FEBS Lett 311: 128–134

    Google Scholar 

  • Meryandini A and Drews G (1996) Import and assembly of the α and β-polypeptides of the light-harvesting complex I (B870) in the membrane system of Rhodobacter capsulatus investigated in an in vitro translation system. Photosynth Res. 47: 21–31

    Google Scholar 

  • Michel H, Weyer KA, Gruenberg H and Lottspeich F (1985) The heavy subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the gene, nucleotide and amino acid sequence. EMBO J 4: 1667–1672

    Google Scholar 

  • Michel H, Weyer KA, Gruenberg H, Dunger I, Oesterhelt D and Lottspeich F. (1986) The light and medium subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: Isolation of the genes, nucleotide and amino acid sequence. EMBO J 5: 1149–1158

    Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev 41: 445–502

    Google Scholar 

  • Molisch H (1907) Die Purpurbakterien nach neuen Untersuchungen. Gustav Fischer Vlg Jena

    Google Scholar 

  • Nagashima KVP, Matsuura K, Ohyama S and Shimada K (1994) Primary structure and transcription of genes encoding B870 and photosynthetic reaction centre apoprotein from Rubruvivax gelatinosus. J Biol Chem 269: 2477–2484

    Google Scholar 

  • Newton JW and Newton GA (1956) Composition of the photoactive subcellular particles from Chromatium. Arch Biochem Biophys 71: 250–265

    Google Scholar 

  • Niederman RA, Mallon DE and Parks LCC (1979) Membranes of Rps. sphaeroides VI: Isolation of a fraction enriched in newly synthesized bacteriochlorophyll α-protein complexes. Biochim Biophys Acta 555: 210–220

    Google Scholar 

  • Nienburg W (1916) Die Perzeption des Lichtreizes bei den Oscillatorien und ihre Reaktion auf Intensitätsschwankungen. Ztschr Bot 8: 161–193

    Google Scholar 

  • Nieth KF and Drews G (1974) The protein patterns of intracytoplasmic membranes and reaction center particles isolated from Rps. capsulata. Arch Microbiol 96: 161–174

    Google Scholar 

  • Nieth KF and Drews G (1975) Formation of reaction centers and light-harvesting bacteriochlorophyll-protein complexes in Rps. capsulata. Arch Microbiol 104: 77–82

    Google Scholar 

  • Niklowitz W and Drews G (1955) Zur elektronnenmikroskopischen Darstellung der Feinstruktur von Rhodospirillum rubrum. Arch Mikrobiol 23: 123–129

    Google Scholar 

  • Niklowitz W and Drews G (1956) Untersuchungen zur Substruktur von Phormidium unicinatum. Arch Mikrobiol 24: 134–146

    Google Scholar 

  • Niklowitz W and Drews G (1957) Vergleichende elektronenmikroskopische Untersuchungen zur Substruktur einiger Hormogonales. Arch Mikrobiol 27: 150–165

    Google Scholar 

  • Nozaki M, Tagawa K and Amon DI (1963) Certain aspects of cyclic and noncyclic photophosphorylation in Rhodospirillum rubrum. In: Gest H, San Pietro A and Vernon LP (eds) Bacterial Photosynthesis. The Antioch Press, Yellow Springs, OH

    Google Scholar 

  • Nultsch W (1975) Phototaxis and photokinesis. In: Carlile MJ (ed) Primitive Sensory and Communication Systems, pp 29–90. Academic Press, London

    Google Scholar 

  • Nultsch W (1985) Lichtorientierte Bewegungen bei Cyanobakterien. Naturwissenschaften 72: 527–533

    Google Scholar 

  • Nultsch W, Schuchart and Höhl M (1979) Investigations on the phototactic orientation of Anabaena variabilis. Arch Microbiol 122: 85–91

    Google Scholar 

  • Oberlé B, Tichy HV, Hornberger U and Drews G (1990) Regulation of formation of photosynthetic light-harvesting complexes in Rba. capsulatus. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 77–84. Plenum Press, New York

    Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophyll a and c in Chloroflexus aurantiacus. J Bacteriol 174: 5021–5026

    Google Scholar 

  • Oelze J and Drews G (1969) Die Morphogenese des Photosyntheseapparates von Rsp. rubrum, II. Die Kinetik der Thylakoidsynthese nach Markierung der Membranen mit [2-14C] Azetat. Biochim Biophys Acta 173: 448–455

    Google Scholar 

  • Oelze J and Drews G (1970) Der Einfluss der Lichtintensität und der Sauerstoffspannung auf die Differenzierung der Membranen von Rsp. rubrum. Biochim Biophys Acta 203: 189–198

    Google Scholar 

  • Oelze J and Pahlke W (1976) The early formation of the photosynthetic apparatus in Rhodospirillum rubrum. Arch Microbiol 108: 281–285

    Google Scholar 

  • Oelze J, Biedermann M and Drews G (1969a) Die Morphogenese des Photosyntheseapparates von Rsp. rubrum I. Die Isolierung und Charakterisierung von zwei Membransystemen. Biochim Biophys Acta 173: 436–447

    Google Scholar 

  • Oelze J, Biedermann M, Freund-Mölbert E and Drews G (1969b) Bacteriochlorophyllgehalt und Proteinmuster der Thylakoide von Rsp. rubrum während der Morphogenese des Photosyntheseapparates. Arch Mikrobiol 66: 154–165

    Google Scholar 

  • Ohad I and Drews G (1982) Biogenesis of the photosynthetic apparatus in prokaryotes and eukaryotes. In: Govindjee (ed) Photosynthesis: Development, Carbon Metabolism and Plant Productivity, Vol II, pp 89–140. Academic Press, New York

    Google Scholar 

  • Oling F, Boekema EJ, de Zarate I O, Visschers R, van Grondelle R, Keegstra W, Brisson A and Picorel R (1996) Two-dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy. Biochim Biophys Acta 1273: 44–50

    Google Scholar 

  • Pardee AB, Schachman HK and Stanier RY (1952) Chromatophores of Rhodospirilum rubrum. Nature 169: 282–283

    Google Scholar 

  • Pieper A (1913) Die Diaphototaxis der Oscillatorien. Ber dtsch Bot Ges 31: 594–599

    Google Scholar 

  • Pfennig N (1993) Reflections of a microbiologist, or how to learn from the microbes. Annu Rev Microbiol 47: 1–29

    Google Scholar 

  • Porra RJ, Schäfer W, Gad'on N, Katheder I, Drews G and Scheer H (1996) Origin of the two carbonyl oxygens of bacteriochlorophyll a: Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans and of a common hydratase mechanism for 3-acetyl group formation. Europ J Biochem, in press

  • Reed DW (1969) Isolation and composition of a photosynthetic reaction center complex from Rhodopseudomonas sphaeroides. J Biol Chem 244: 4936–4941

    Google Scholar 

  • Reidl H, Golecki JR and Drews G (1983) Energetic aspects of photophosphorylation capacity and reaction center content of Rps. capsulata grown in a turbidostat under different irradiances. Biochim Biophys Acta 725: 455–463

    Google Scholar 

  • Reidl H, Golecki JR and Drews G (1985) Composition and activity of the photosynthetic system of Rps. capsulata. The physiological role of the B800–850 light-harvesting complex. Biochim Biophys Acta 808: 328–333

    Google Scholar 

  • Richter P and Drews G (1991) Incorporation of light-harvesting polypeptides into the intracytoplasmic membrane of Rba. capsulatus. J Bacteriol. 173: 5336–5345

    Google Scholar 

  • Richter P, Cortez N and Drews G (1991) Possible role of the highly conserved amino acids Trp-8 and Pro-13 in the N-terminal segment of the pigment-binding polypeptide LH Iα of Rb. capsulatus. FEBS Lett 285: 80–84

    Google Scholar 

  • Richter P, Brand M and Drews G (1992) Characterization of LH I- and LH I+ Rba. capsulatus pufA mutants. J Bacteriol 174: 3030–3041

    Google Scholar 

  • Ris H and Singh RN (1961) Electron microscope studies on bluegreen algae. J Biophys Biochem Cytol 9: 63–80

    Google Scholar 

  • Sabaty M and Kaplan S (1996) mgpS, a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1. J Bacteriol 178: 35–45

    Google Scholar 

  • Schachman HK, Pardee AB and Stanier RY (1952) Studies on the macromolecular organization of microbial cells. Arch Biochem Biophys 38: 245–260

    Google Scholar 

  • Schmid G (1921) Uber Organisation und Schleimbildung bei Oscillatoria jenensis. Pringsh Jb 60: 572–627

    Google Scholar 

  • Schmid G (1923) Das Reizverhalten künstlicher Teilstücke, die Kontraktilität und das osmotische Verhalten der Oscillatoria jenensis. Pringsh Jb 62: 328–419

    Google Scholar 

  • Schmitz R (1967) Über die Zusammensetzung der pigmenthaltigen Strukturen aus Prokaryonten. Arch Mikrobiol 56: 225–237

    Google Scholar 

  • Schön G (1971) Der Einfluß der Kulturbedingungen auf den Nicotinamid-Adenin dinucleotid (phosphat)-Gehalt in Zellen von Rsp. rubrum. Arch Microbiol 79: 147–163

    Google Scholar 

  • Schumacher A and Drews G (1978) The formation of bacteriochlorophyll-protein complexes of the photosynthetic apparatus of Rhodopseudomonas capsulata during early stages of development. Biochim Biophys Acta 501: 183–194

    Google Scholar 

  • Schumacher A and Drews G (1979) Effect of light intensity on membrane differentiation in Rps. capsulata. Biochim Biophys Acta 547: 417–428

    Google Scholar 

  • Shiozawa JA, Cuendet PA, Drews G and Zuber H (1980) Isolation and characterization of the polypeptide components from light-harvesting pigment-protein complex B800–850 of Rba. capsulatus. Eur J Biochem 111: 455–460

    Google Scholar 

  • Shiozawa JA, Welte W, Hodapp N and Drews G (1982) Studies on the size and composition of the isolated light-harvesting B800–850 pigment-protein complex of Rba. capsulatus. Arch Biochem Biophys 213: 473–485

    Google Scholar 

  • Sistrom WR (1977) Transfer of chromosomal genes mediated by plasmid R 68.45 in Rba. sphaeroides. J Bacteriol 131: 526–532

    Google Scholar 

  • Sistrom WR and Clayton RK (1964) Studies on a mutant of Rps. sphaeroides unable to grow photosynthetically. Biochim Biophys Acta 88: 61–73

    Google Scholar 

  • Socket RE, Donohue TJ, Varga AR and Kaplan S (1989) Control of photosynthetic membrane assembly in Rba. sphaeroides mediated by puhA and flanking sequences. J Bacteriol 171: 436–446

    Google Scholar 

  • Stachelin LA, Golecki JR, Fuller RC and Drews G (1978) Visualization of the supramolecular architecture of chlorosomes in freeze-fractured cells of Chloroflexus auratiacus. Arch Microbiol 119: 269–277

    Google Scholar 

  • Staehelin LA, Golecki JR and Drews G (1980) Supramolecular organization of chlorosomes and their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589: 30–45

    Google Scholar 

  • Stahl E (1880) Uber den Einfluß von Richtung und Stärke der Beleuchtung auf einige Bewegungserscheinungen im Pflanzenreich. Bot Ztg 38: 409–412

    Google Scholar 

  • Stanier RY (1980) The Journey, not the arrival matters. Annu Rev Microbiol 34: 1–48

    Google Scholar 

  • Steinmann E (1952) An electron microscope study of the lamellar structure of chloroplasts. Exp Cell Res 3: 367–372

    Google Scholar 

  • Steinmann E and Sjöstrand FS (1955) The ultrastructure of chloroplasts. Exp Cell Res 8: 15–23

    Google Scholar 

  • Stiehle H, Cortez N, Klug G and Drews G (1990) A negatively charged N-terminus in the α-polypeptide inhibited formation of the light-harvesting complex I in Rba. capsulatus. J Bacteriol 172: 7131–7137

    Google Scholar 

  • Straley SC, Parson WW, Mauzerall DC and Clayton RK (1973) Pigment content and molar extinction coefficients of photochemical reaction centers from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 305: 597–609

    Google Scholar 

  • Tadros MH and Drews G (1990) Pigment-proteins of antenna complexes from purple non-sulfur bacteria. In: Drews G and Dawes EA (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 181–192. Plenum Press. New York

    Google Scholar 

  • Tadros MH, Suter F, Drews G and Zuber H (1983) The complete amino acid sequence of the large bacteriochlorophyll-binding polypeptide from light-harvesting complex II of Rba. capsulatus. Eur J Biochem 129: 533–536

    Google Scholar 

  • Tadros LMH, Frank R and Drews G (1985) The complete amino acid sequence of the small bacteriochlorophyll-binding polypeptide B800–850 from light-harvesting complex B800–850 of Rba. capsulatus. FEBS Lett 183: 91–94

    Google Scholar 

  • Tadros MH, Frank R, Dörge B, Gad'on N, Takemoto JY and Drews G (1987) Orientation of the B800–850, B870 and reaction center polypeptides on the cytoplasmic and periplasmic surfaces of Rba. capsulatus. Biochemistry 26: 7680–7687

    Google Scholar 

  • Tauschel HD and Drews G (1967) Thylakoidmorphogenese bei Rhodopseudomonas palustris. Arch Mikrobiol 59: 381–404

    Google Scholar 

  • Thornber JP, Trosper TL and Strouse CE (1978) Bacteriochlorophyll in vivo: Relationship of spectral forms to specific membrane components. In: Clayton RK and Sistrom WR (eds) The Photosynthetic Bacteria, pp 133–160. Plenum Press, New York

    Google Scholar 

  • Tichy HV, Oberlé B, Stiehle H, Schiltz E and Drews G (1989) Genes downstream from pucB and pucA are essential for formation of the B800–850 complex of Rhodobacter capsulatus. J Bacteriol 171: 4914–4922

    Google Scholar 

  • Tichy HV, Albien KU, Gad'on N and Drews G (1991) Analysis of the Rhodobacter capsulatus puc operon: The pucC gene plays a central role in the regulation of LH II(B800–850) complex expression. EMBO J 10: 2949–2955

    Google Scholar 

  • Troschel D and Müller M (1990) Development of a cell-free system to study the membrane assembly of photosynthetic proteins of Rba. capsulatus. J Cell Biol 111: 87–94

    Google Scholar 

  • van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch Mikrobiol 3: 1–112

    Google Scholar 

  • van Niel CB (1944) The eulture, general physiology, morphology and classification of the non-sulfur purple and brown bacteria. Bacteriol Rev 8: 1–118

    Google Scholar 

  • van Niel CB (1967) The education of a microbiologist; some reflections. Annu Rev Microbiol 21: 1–30

    Google Scholar 

  • Verméglio A, Joliot P and Joliot A (1995) Organization of electron transfer components and supercomplexes. In: Blankenship RE, Madigan MT and Bauer CE (eds) Anoxygenic Photosynthetic Bacteria, pp 279–295. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • von Heijne G (1994) Membrane proteins: from sequence to structure. Annu Rev Biophys Biomol Struct 23: 167–192

    Google Scholar 

  • Vredenberg WJ and Duysens LNM (1963) Transfer of energy from bacteriochlorophyll to a reaction center during bacteriochlorophyll photosynthesis. Nature 197: 355–357

    Google Scholar 

  • Wacker T, Gad'on N, Becker A, Mäntele W, Kreutz W, Drews G and Welte W (1986) Crystallization and spectroscopic investigation with polarized light of the reaction center-B875 light-harvesting complex of Rhodopseudomonas palustris. FEBS Lett 197: 267–273

    Google Scholar 

  • Wall JD, Weaver P and Gest H (1975) Gene transfer agents, bacteriophages and bacteriocines. Arch Microbiol 105: 217–224

    Google Scholar 

  • Weaver P (1971) Temperature-sensitive mutations of the photosynthetic apparatus of Rsp. rubrum. Proc Natl Acad Sci USA 68: 136–138

    Google Scholar 

  • Weckesser J, Drews G and Fromme I (1972) Chemical analysis of and degradation studies on the cell wall lipopolysaccharide of Rps. capsulata. J Bacteriol 109: 1106–1113

    Google Scholar 

  • Weckesser J, Drews G, Mayer H and Fromme I (1974a) Lipopolysaccharid aus Rhodospirillaceae, Zusammensetzung und taxonomische Relevanz. Zbl Bakt Hyg I Abt Orig A 228: 193–198

    Google Scholar 

  • Weckesser J, Drews G, Roppel J, Mayer H and Fromme I (1974b) The lipopolysaccharide of Rhodopseudomonas viridis. Arch Microbiol 101: 233–245

    Google Scholar 

  • Weckesser J, Drews G and Mayer H (1979) Lipopolysaccharides of photosynthetic prokaryotes. Annu Rev Microbipl 33: 215–239

    Google Scholar 

  • Weise G, Drews G, Jann B and Jann K (1970) Identification and analysis of a lipopolysaccharide in cell walls of the blue-green alga Anacystis nidulans. Arch Mikrobiol 71: 89–98

    Google Scholar 

  • Wellington CL and Beatty JT (1991) Overlapping mRNA transcripts of photosynthetic gene operons in Rba. capsulatus. J Bacteriol 173: 1432–1443

    Google Scholar 

  • Welte W, Wacker T, Leis M, Kreutz W, Shiozawa I, Gad'on N and Drews G (1985) Crystallization of the photosynthetic light-harvesting pigment-protein complex B800–850 of Rba. capsulatus. FEBS Lett 182: 260–264

    Google Scholar 

  • Wiessner C, Dunger I and Michel (1990) Structure and transcription of the genes encoding the B1012 light-harvesting complex and α-subunits and the photosynthetic reaction center L, M and cytochrome c subunits from Rps. viridis. J Bacteriol 172: 2877–2887

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961a) Experimental evidence for the mechanism of photosynthesis. Nature (London) 191: 194–195

    Google Scholar 

  • Witt HT, Müller A and Rumberg B (1961b) Oxidized cytochrome and chlorophyll in photosynthesis. Nature 192: 967–969

    Google Scholar 

  • Wolken JJ and Palade GE (1952) Fine structure of chloroplasts in two flagellates. Nature (London) 170: 114

    Google Scholar 

  • Wolken JJ and Palade GE (1953) An electron microscope study of two flagellates. Ann New York Acad Sci 56: 873

    Google Scholar 

  • Yen H-C and Marrs B (1976) Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rps. capsulata. J Bacteriol 126: 619–629

    Google Scholar 

  • Yildiz TH, Gest H and Bauer CE (1991) Attenuated effect of oxygen on photopigment synthesis in Rhodospirillum centenum. J Bacteriol 173: 5502–5506

    Google Scholar 

  • Yildiz FH, Gest H and Bauer CE (1992) Conservation of the photosynthesis gene cluster in Rsp. centenum. Mol Microbiol 6: 2683–2691

    Google Scholar 

  • Young DA, Bauer CE, Williams JC and Marrs BL (1989) Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rba. capsulatus. Mol Gen Genet 218: 1–12

    Google Scholar 

  • Youvan DC, Bylina EJ, Alberti AM, Begusch H, and Hearst JE (1984) Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna and flanking sequences from Rps. capsulata. Cell 37: 949–957

    Google Scholar 

  • Yurkov V, Stackebrandt E, Holmes A, Fuerst JA, Hugenholtz P, Golecki J, Gad'on N, Gorlenko VM, Kompantseva EI and Drews G (1994) Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Bacteriol 44: 427–437

    Google Scholar 

  • Zilinsky JW, Sojka GA and Gest H (1971) Energy charge regulation in photosynthetic bacteria. Biochem Biophys Res Commun 42: 955–961

    Google Scholar 

  • Zsebo KM and Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from Rps. capsulata. Cell 37: 937–947

    Google Scholar 

  • Zuber H (1990) Considerations on the structural principles of the antenna complexes of phototrophic bacteria. In: Drews G and Dawes EA (eds) Molecular Complexes in Phototrophic Bacteria, pp 161–180. Plenum Press, New York

    Google Scholar 

  • Zurdo J, Centeno MA, Odriozola JA, Fernández-Cabrera C and Ramirez JM (1995) The structural role of the carotenoid in the bacterial light-harvesting protein 2 (LH2) of Rhodobacter capsulatus. A Fourier transform Raman spectroscopy and circular dichroism study. Photosynth Res. 46: 363–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Written at the invitation of Dr Govindjee and dedicated to Martin D. Kamen, who received the 1996 Enrico Fermi Award for the discovery and application of 14C.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhart, D. Forty-five years of developmental biology of photosynthetic bacteria. Photosynth Res 48, 325–352 (1996). https://doi.org/10.1007/BF00029467

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029467

Key words

Navigation