Skip to main content
Log in

A T-DNA transfer stimulator sequence in the vicinity of the right border of pRi8196

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

An 8 bp sequence repeated 6 times is present to the right of the mannopine type pRi8196 T-DNA righ-border sequence. Experiments were designed to test whether these repeats have a role in T-DNA transfer. Several constructs in which different lengths of pRi8196 right-border region were linked to the cucumopine synthesis gene on anAgrobacterium-Escherichia coli shuttle vector were made. The recombinant plasmids were tested for their efficiency to act as a source of T-DNA in a binary system in which a wild-type Ri plasmid provided virulence and root-inducing functions. The T-DNA transfer efficiency of the constructs was assessed by computing the relative frequency of roots containing cucumopine. Depending on the Ri plasmid used as source of virulence functions, a high level of T-DNA transfer was observed only if 6 (pRi8196) or 5 (pRiA4) repeats were present. These results were confirmed by looking for single-stranded T-DNA molecules (T-strands) in bacteria induced for virulence. The repetition of the 8 bp unit was named ‘T-DNA transfer stimulator sequence’ (TSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed A: Use of transposon-promoted deletions in DNA sequence analysis. Meth Enzymol 155: 177–204 (1987).

    PubMed  Google Scholar 

  2. Albright LM, Yanofsky MF, Leroux B, Ma D, Nester EW: Processing of the T-DNA ofAgrobacterium tumefaciens generates border nicks and linear, single-stranded T-DNA. J Bact 169: 1046–1055 (1987).

    PubMed  Google Scholar 

  3. Alt-Moerbe J, Rak B, Schröder J: A 3.6-kbp segment from thevir region of Ti plasmids contains genes responsible for border sequence-directed production of T region circles inE. coli. EMBO J 5: 1129–1135 (1986).

    Google Scholar 

  4. Brevet J, Borowski D, Tempé J: Identification of the region encoding opine synthesis and of a region involved in host specificity on the T-DNA of cucumber-type Ri plasmid. Mol Plant-Microbe Interact 1: 75–79 (1988).

    Google Scholar 

  5. Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F, Tempé J:Agrobacterium rhizogenes inserts T-DNA into the genomes of the host-plant root cells. Nature 295: 432–434 (1982).

    Google Scholar 

  6. Christie PJ, Ward JE, Winans SC, Nester EW: TheAgrobacterium tumefaciens virE2 gene product is a single stranded DNA binding protein that associates with T-DNA. J Bact 170: 2659–2667 (1988).

    PubMed  Google Scholar 

  7. David C, Chilton M-D, Tempé J: Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/technology 2: 73–76 (1984).

    Article  Google Scholar 

  8. Depicker A, Herman L, Jacobs L, Schell J, Van Montagu M: Frequencies of simultaneous transformation with different T-DNAs and their relevance to theAgrobacterium/plant cell interaction. Mol Gen Genet 201: 477–484 (1985).

    Article  Google Scholar 

  9. Dessaux Y, Petit A, Tempé J: Opines inAgrobacterium biology. In: Verma DPS (ed) Molecular Signals in Plant-Microbe Communications, pp. 109–136, CRC Press, Boca Raton, FL (1992).

    Google Scholar 

  10. De Vos G, Zambryski P: Expression ofAgrobacterium nopaline-specific VirD1, VirD2, and VirC1 proteins and their requirement for T-stand production inE. coli. Mol Plant-Microbe Interact 2: 43–52 (1989).

    PubMed  Google Scholar 

  11. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank ofRhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  12. Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang XW, Finlay DR, Guiney D, Helinski DR: Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153 (1985).

    PubMed  Google Scholar 

  13. Gielt C, Koukolikova Z, Hohn B: Mobilization of T-DNA fromAgrobacterium to plant cells involve a protein that binds single-stranded DNA. Proc Natl Acad Sci USA 84: 9006–9010 (1987).

    PubMed  Google Scholar 

  14. Hansen G, Larribe M, Vaubert D, Tempé J, Biermann BJ, Montoya AL, Chilton M-D, Brevet J:Agrobacterium rhizogenes pRi8196 T-DNA: Mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc Natl Acad Sci USA 88: 7763–7767 (1991).

    PubMed  Google Scholar 

  15. Jen GC, Chilton M-D: The right border region of pTiT37 T-DNA is intrinsically more active than the left border region in promoting T-DNA transformation. Proc Natl Acad Sci USA 83: 3895–3899 (1986).

    PubMed  Google Scholar 

  16. Joos H, Inze D, Caplan A, Sormann M, Van Montagu M, Schell J: Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067 (1983).

    Article  PubMed  Google Scholar 

  17. Jouanin L, Bouchez D, Drong RF, Tepfer D, Slightom JL: Analysis of TR-DNA/plant junctions in the genome of aConvolvulus arvensis clone transformed withAgrobacterium rhizogenes strain A4. Plant Mol Biol 12: 75–85 (1989).

    Article  Google Scholar 

  18. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  19. Melchers LS, Regensburg-Tuink JG, Bourret RB, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Membrane topology and functional analysis of the sensory protein VirA ofAgrobacterium tumefaciens. EMBO J 8: 1919–1925 (1989).

    PubMed  Google Scholar 

  20. Peralta GE, Helmiss R, Ream W: ‘Overdrive’, a T-DNA transmission enhancer on theAgrobacterium tumefaciens tumour-inducing plasmid. EMBO J 5: 1137–1142 (1986).

    Google Scholar 

  21. Petit A, Berkaloff A, Tempé J: Multiple transformation of plant cells byAgrobacterium may be responsible for the complex organization of T-DNA in crown gall and hairy root. Mol Gen Genet 202: 388–393 (1986).

    Article  Google Scholar 

  22. Sanger F, Coulson AR, Barell BG, Smith AJH, Roe B: Cloning in single strand bacteriophage as an aid to rapid DNA sequencing. J Mol Biol 143: 161–178 (1980).

    PubMed  Google Scholar 

  23. Shurviton CE, Ream W: Stimulation ofAgrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bact 173: 5558–5563 (1991).

    PubMed  Google Scholar 

  24. Slightom JL, Durand-Tardif M, Jouanin L, Tepfer D: Nucleotide sequence analysis of TL-DNAAgrobacterium rhizogenes type plasmid. Identification of open reading frames. J Biol Chem 261: 108–121 (1986).

    PubMed  Google Scholar 

  25. Stachel SE, Zambryski PC: VirA and virG control the plant induced activation of the T-DNA transfer process ofAgrobacterium tumefaciens. Cell 46: 325–333 (1986).

    Article  PubMed  Google Scholar 

  26. Stachel SE, Nester EW, Zambryski PC: A plant cell factor inducesAgrobacterium tumefaciens vir gene expression. Proc Natl Acad Sci USA 83: 379–383 (1986).

    Google Scholar 

  27. Stachel SE, Timmerman B, Zambryski PC: Generation of single stranded T-DNA molecules during the initial stages of T-DNA transfer fromAgrobacterium tumefaciens to plant cells. Nature 322: 706–712 (1986).

    Google Scholar 

  28. Toro N, Datta A, Yanofsky M, Nester E: Role of the overdrive sequence in T-DNA border cleavage inAgrobacterium. Proc Natl Acad Sci USA 85: 8558–8562 (1988).

    PubMed  Google Scholar 

  29. Toro N, Datta A, Carmi OA, Young C, Prusti RK, Nester EW: TheAgrobacterium tumefaciens virC1 gene product binds to overdrive, a T-DNA transfer enhancer. J Bact 171: 6845–6849 (1989).

    PubMed  Google Scholar 

  30. Van Haaren MJJ, Sedee NJA, Schilperoort RA, Hooykaas PJJ: Overdrive is a T-region transfer enhancer which stimulates T-strand production inAgrobacterium tumefaciens. Nucl Acids Res 15: 8983–8997 (1987).

    PubMed  Google Scholar 

  31. Van Haaren MJJ, Pronk JT, Schilperoort RA, Hooykaas PJJ: Functional analysis of theAgrobacterium tumefaciens octopine Ti-plasmid left and right T-region border fragments. Plant Mol Biol 8: 95–104 (1987).

    Google Scholar 

  32. Van Haaren MJJ, Sedee NJA, de Boer HA, Schilperoort RA, Hooykaas PJJ: Mutational analysis of the conserved domains of a T-region border repeat ofAgrobacterium tumefaciens. Plant Mol Biol 13: 523–531 (1989).

    PubMed  Google Scholar 

  33. Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J: Large plasmid inAgrobacterium tumefaciens essential for crown gall-inducing ability. Nature 252: 169–170 (1974).

    PubMed  Google Scholar 

  34. Wang K, Herrera-Estrella L, Van Montagu M, Zambryski P: Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer fromAgrobacterium to the plant genome. Cell 38: 455–462 (1984).

    Article  PubMed  Google Scholar 

  35. Yanish-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

  36. Young C, Nester EW: Association of the VirD2 protein with the 5′ end of T-strands inAgrobacterium tumefaciens. J Bact 170: 3367–3374 (1988).

    PubMed  Google Scholar 

  37. Zambryski P, Tempé J, Schell J: Transfer and function of T-DNA genes fromAgrobacterium Ti and Ri plasmids in plants. Cell 56: 193–201 (1989).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, G., Tempé, J. & Brevet, J. A T-DNA transfer stimulator sequence in the vicinity of the right border of pRi8196. Plant Mol Biol 20, 113–122 (1992). https://doi.org/10.1007/BF00029154

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029154

Key words

Navigation