Skip to main content
Log in

Characterization of theAc/Ds behaviour in transgenic tomato plants using plasmid rescue

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We describe the use of plasmid rescue to facilitate studies on the behaviour ofDs andAc elements in transgenic tomato plants. The rescue ofDs elements relies on the presence of a plasmid origin of replication and a marker gene selective inEscherichia coli within the element. The position within the genome of modifiedDs elements, rescued both before and after transposition, is assigned to the RFLP map of tomato. Alternatively to the rescue ofDs elements equipped with plasmid sequences,Ac elements are rescued by virtue of plasmid sequences flanking the element. In this way, the consequences of the presence of an (active)Ac element on the DNA structure at the original site can be studied in detail. Analysis of a library ofAc elements, rescued from the genome of a primary transformant, shows thatAc elements are, infrequently, involved in the formation of deletions. In one case the deletion refers to a 174 bp genomic DNA sequence immediately flankingAc. In another case, a 1878 bp internalAc sequence is deleted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antequera F, Bird AP: Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J 7: 2295–2299 (1988).

    Google Scholar 

  2. Bernatzky R, Tanksley SD: Towards a saturated linkage map of tomato based on isozymes and random cDNA sequences. Genetics 112: 8887–8898 (1986).

    Google Scholar 

  3. Chandlee JM: The utility of transposable elements as tools for the isolation of plant genes. Physiol Plant 79: 105–115 (1990).

    Article  Google Scholar 

  4. Chen J, Greenblatt IM, Dellaporta SL: Transposition ofAc from theP locus of maize into unreplicated chromosomal sites. Genetics 117: 109–116 (1987).

    PubMed  Google Scholar 

  5. Dooner HK, Ralston E, English J: Deletions and breaks involving the borders of theAc element in thebz-m2(Ac) allele of maize. In: Nelson O (ed) International Symposium on Plant Transposable Elements, pp. 213–226. Plenum, New York (1988).

    Google Scholar 

  6. Dooner HK, Keller J, Harper E, Ralston E: Variable patterns of transposition of the maize elementActivator in tobacco. Plant Cell 3: 473–482 (1991).

    Article  PubMed  Google Scholar 

  7. Earp DJ, Lowe B, Baker B: Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucl Acids Res 18: 3271–3278 (1990).

    PubMed  Google Scholar 

  8. Engels WR, Johnson-Schiltz DM, Eggleston WB, Sved J: High-frequency P element loss inDrosophila is homolog dependent. Cell 62: 515–525 (1990).

    Article  PubMed  Google Scholar 

  9. Gheysen G, Villarroel R, Van Montagu M: Illegitimate recombination in plants: a model for T-DNA integration. Genes Devel 5: 287–297 (1991).

    PubMed  Google Scholar 

  10. Hamilton BA, Palazzolo MJ, Chang JH, VijayRaghavan K, Mayeda CA, Whitney MA, Meyerowitz EM: Large scale screen for transposon insertions intocloned genes. Proc Natl Acad Sci USA 88: 2731–2735 (1991).

    PubMed  Google Scholar 

  11. Haring MA, Rommens CMT, Nijkamp HJJ, Hille J: The use of transgenic plants to understand transposition mechanisms and to develop transposon tagging strategies. Plant Mol Biol 16: 449–461 (1991).

    PubMed  Google Scholar 

  12. Haring MA, Gao J, Volbeda T, Rommens CMT, Nijkamp HJJ, Hille J: A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia. Plant Mol Biol 13: 189–201 (1982).

    Article  Google Scholar 

  13. Hille J, Koornneef M, Ramanna MS, Zabel P: Tomato: a crop species amenable to improvement by cellular and molecular methods. Euphytica 42: 1–23 (1989).

    Google Scholar 

  14. Holsters M, Villaroel R, Van Montagu M, Schell J: The use of selectable markers for the isolation of plant DNA/T-DNA junction fragments in a cosmid vector. Mol Gen Genet 185: 283–289 (1982).

    Article  Google Scholar 

  15. Klösgen RB, Gierl A, Schwarz-Sommer Z, Saedler H: Molecular analysis of thewaxy locus ofZea mays Mol Gen Genet 203: 237–244 (1986).

    Article  Google Scholar 

  16. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J: High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467–8471 (1989).

    PubMed  Google Scholar 

  17. Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Redei GP, Schell J: Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging inArabidopsis thaliana EMBO J 9: 1337–1346 (1990).

    PubMed  Google Scholar 

  18. Lander ES, Green P, Abrahamson J, Barlow A Daly MJ, Lincoln SE, Newburg L: MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181 (1987).

    PubMed  Google Scholar 

  19. Mayerhofer R, Koncz-Kalman Z, Nawrath C, Angelis K, Redei GP, Schell J, Hohn B, Koncz C: T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10: 697–704 (1991).

    PubMed  Google Scholar 

  20. Murai N, Li Z, Kawagoe Y, Hayashimoto A: Transposition of the maize activator element in transgenic rice plants. Nucl Acids Res 19: 617–622 (1991).

    PubMed  Google Scholar 

  21. Nevers P, Shepherd NS, Saedler H: Plant transposable elements. Adv Bot Res 12: 103–203 (1986).

    Google Scholar 

  22. Osborne BI, Corr CA, Prince JP, Hehl R, Tanksley SD, McCormick S, Baker B:Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics 129: 833–844 (1991).

    PubMed  Google Scholar 

  23. Parker JD, Rabinovitch PS, Burner GC: Targeted gene walking polymerase chain reaction. Nucleic Acids Res 19: 3055–3060 (1991).

    PubMed  Google Scholar 

  24. Raleigh EA, Murray NE, Revel H, Blumenthal RM, Westaway D, Reith AD, Rigby PWJ, Elhai J, Hanahan D: McrA and McrB restriction phenotypes of someE. coli strains and implications for gene cloning. Nucl Acids Res 16: 1563–1575 (1988).

    PubMed  Google Scholar 

  25. Robbins TP, Carpenter R, Coen ES: A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition inAntirrhinum majus. EMBO J 8: 5–13 (1989).

    Google Scholar 

  26. Rommens CMT, Kneppers TJA, Haring MA, Nijkamp HJJ, Hille J: A transposon tagging strategy with Ac on plant cell level in heterologous plant species. Plant Sci 74: 99–106 (1991).

    Article  Google Scholar 

  27. Rommens CMT, van der Biezen EA, Ouwerkerk PBF, Nijkamp HJJ, Hille J:Ac-induced disruption of the doubleDs structure in tomato. Mol Gen Genet 228: 453–458 (1991).

    Article  PubMed  Google Scholar 

  28. Rommens CMT, van Haaren MJJ, Buchel AS, Mol JNM, van Tunen AJ, Nijkamp HJJ, Hille J: Transactivation ofDs byAc-transposase gene fusions in tobacco. Mol Gen Genet 231: 433–441 (1992).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommens, C.M.T., Rudenko, G.N., Dijkwel, P.P. et al. Characterization of theAc/Ds behaviour in transgenic tomato plants using plasmid rescue. Plant Mol Biol 20, 61–70 (1992). https://doi.org/10.1007/BF00029149

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029149

Key words

Navigation