Skip to main content
Log in

Photosynthetic ATPases: purification, properties, subunit isolation and function

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic coupling factor ATPases (F1-ATPases) generally censist of five subunits named α, β, γ, δ and ε in order of decreasing apparent molecular weight. The isolated enzyme has a molecular weight of between 390,000 to 400,000, with the five subunits probably occurring in a 3:3:1:1:1 ratio. Some photosynthetic F1 ATPases are inactive as isolated and require treatment with protease, heat or detergent in order to elicit ATPase activity. This activity is sensitive to inhibition by free divalent cations and appears to be more specific for Ca2+ vs. Mg2+ as the metal ion substrate chelate. This preference for Ca2+ can be explained by the higher inhibition constant for inhibition of ATPase activity by free Ca2+. Methods for the assay of a Mg-dependent ATPase activity have recently been described. These depend on the presence of organic solvents or detergents in the reaction mixture for assay. The molecular mechanism behind the expression of either the Ca- or Mg-ATPase activities is unknown. F1-ATPases function to couple proton efflux from thylakoid membranes or chromatophores to ATP synthesis. The isolated enzyme may thus also be assayed for the reconstitution of ‘coupling activity’ to membranes depleted of coupling factor 1.

The functions of the five subunits in the complex have been deduced from the results of chemical modification and reconstitution studies. The δ subunit is required for the functional binding of the F1 to the F0. The active site is probably contained in the β (and α) subunit(s). The proposed functions for the γ and ε subunits are, however, still matters of controversy. Coupling factors from a wide variety of species including bacteria, algae, C3 and C4 plants, appear to be immunologically related. The β subunits are the most strongly related, although the α and γ subunits also show significant immunological cross-reactivity. DNA sequence analyses of the genes for the β subunit of CF1 have indicated that the primary sequence of this polypeptide is highly conserved. The genes for the polypeptides of CF1 appear to be located in two cellular compartments. The α, β and ε subunits are coded for on chloroplast DNA, whereas the γ and δ subunits are probably nuclear encoded. Experiments involving protein synthesis by isolated chloroplasts or protein synthesis in the presence of inhibitors specific for one or the other set of ribosomes in the cell suggest the existence of pools of unassembled CF1 subunits. These pools, if they do exist in vivo, probably make up no greater than 1% of the total CF1 content of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMP-PNP:

adenylyl 5′ imidodiphosphate

bchl:

bacteriochlorophyll

CF1 :

chloroplast coupling factor 1

CF1-CF0 :

the chloroplast ATP synthase complex

chl:

chlorophyll

CvF1 :

F1 from Chromatium vinosum

DCCD:

N, N′-dicyclohexyl carbodiimide

EF1 :

the coupling factor 1 isolated from membranes of Escherichia coli

F0 :

the hydrophobic, integral membrane portion of the ATP synthase

F1 :

coupling factor 1, the extrinsic membrane portion of the ATP synthase

FSBA:

5′-p-fluorosulfonylbenzoyladenosine

Kd :

dissociation constant

ki :

inhibition constant

kii :

intercept inhibition constant

kis :

slope inhibition constant

LS:

large subunit of ribulose bisphosphate carboxylase

MF1 :

mitochondrial coupling factor 1

M1F1 :

F1 from Mastigocladus laminosus

NBD-Cl:

4-chloro-7-nitrobenzo-2-oxa-1,3-diazole

PAGE:

polyacrylamide gel electrophoresis

RcF1 :

F1 from Rhodopseudomonas capsulata

RpF1 :

F1 from Rhodopseudomonas palustris

RrF1 :

F1 from Rhodospirillum rubrum

RsF1 :

F1 from Rhodopseudomonas sphaeroides

SDS:

sodium dodecyl sulfate

S1F1 :

F1 from Synechococcus lividus

SpF1 :

F1 from Spirulina platensis

TF1 :

F1 from the thermophilic bacterium, PS3

tricine:

N-tris (hydroxymethyl) methyl glycine

tris:

tris (hydroxymethyl)-amino methane; and

Vmax:

maximal velocity or maximal activity

References

  1. Akey CW, Spitsberg V and Edelstein SJ (1983) J Biol Chem 258, 3222–3229

    Google Scholar 

  2. Andreo CS, Patrie WJ and McCarty RE (1982) J Biol Chem 257, 9968–9975

    Google Scholar 

  3. Andreo CS, Ravizzini RA and Vallejos RH (1979) Biochim Biophys Acta 547, 370–379

    Google Scholar 

  4. Anthon GE and Jagendorf AT (1983) Biochim Biophys Acta 723, 358–365

    Google Scholar 

  5. Arntzen CJ, Darr SC, Mullet JE, Steinback KE and Pfister K (1982) in Function of Quinones in Energy Conserving Systems (B.L. Trumpower, Ed.), Academic Press, Inc., pp. 443–452

  6. Avron M (1962) J Biol Chem 237, 2011–2017

    Google Scholar 

  7. Avron M (1963) Biochim Biophys Acta 77, 699–702

    Google Scholar 

  8. Baccarini-Melandri A, Gest H and San Pietro A (1970) J Biol Chem 245, 1224–1226

    Google Scholar 

  9. Baccarini-Melandri A and Melandri BA (1980) Methods in Enzymology 69, 313–321

    Google Scholar 

  10. Baird BA and Hammes GG (1976) J Biol Chem 251, 6953–6962

    Google Scholar 

  11. Baird BA and Hammes GG (1979) Biochim Biophys Acta 549, 31–53

    Google Scholar 

  12. Bakker-Grunwald T and VanDam K (1973) Biochim Biophys Acta 292, 808–814

    Google Scholar 

  13. Béliveau R, Moroney JV and McCarty RE (1982) Arch Biochem Biophys 214, 668–674

    Google Scholar 

  14. Bengis-Garber C and Gromet-Elhanan Z (1979) Biochemistry 18, 3577–3581

    Google Scholar 

  15. Bennoun P, Masson A, Piccioni R and Chua, N-H (1978) in Chloroplast Development (G. Akoyunoglou et al., eds.), Elsevier/North-Holland Biomedical Press, pp. 721–726

  16. Berzborn RJ, Roos P, Bonnekamp G (1984) In Advances in Photosynthesis Research, Vol. II, (C Sybesma, ed.), Martinus Nijhoff/Dr W. Junk Publishers, pp. 587–590

  17. Berzborn RJ and Schröer P (1976) FEBS Lett 70, 271–275

    Google Scholar 

  18. Binder A and Bachofen R (1979) FEBS Lett 104, 66–70

    Google Scholar 

  19. Binder A, Jagendorf A and Ngo E (1978) J Biol Chem 253, 3094–3100

    Google Scholar 

  20. Blair GE and Ellis RJ (1973) Biochim Biophys Acta 319, 223–234

    Google Scholar 

  21. Bouthyette P-Y and Jagendorf AT (1978) Plant and Cell Physiol 19, 1169–1174

    Google Scholar 

  22. Boyer PD and Kohlbrenner WE (1981) in Energy Coupling in Photosynthesis, (BR Selman and S Selman-Reimer, eds), Elsevier North Holland, Inc., pp. 231–240

  23. Bragg PD and Hou C (1975) Arch Biochem Biophys 167, 311–321

    Google Scholar 

  24. Bragg PD and Hou C (1977) Arch Biochem Biophys 178, 486–494

    Google Scholar 

  25. Bruist MF and Hammes GG (1981) Biochemistry 20, 6298–6305

    Google Scholar 

  26. Buetow D (1982) in Photosynthesis: Development, Carbon Metabolism, and Plant Productivity, Vol. II (Govindjee, ed.), Academic Press, Inc., pp. 43–88

  27. Cantley LC and Hammes GG (1975) Biochemistry 14, 2968–2975

    Google Scholar 

  28. Cantley LC and Hammes GG (1975) Biochemistry 14, 2976–2981

    Google Scholar 

  29. Cantley LC and Hammes GG (1976) Biochemistry 15, 9–14

    Google Scholar 

  30. Carlier M-F and Hammes GG (1979) Biochemistry 18, 3446–3451

    Google Scholar 

  31. Carmeli C (1970) FEBS Lett 7, 297–300

    Google Scholar 

  32. Chang IC and Kahn JS (1966) Arch Biochem Biophys 117, 282–288

    Google Scholar 

  33. Chua N-H and Schmidt GW (1979) J Cell Biol 81, 461–483

    Google Scholar 

  34. Cross RL (1981) Ann Rev Biochem 50, 681–714

    Google Scholar 

  35. Cross RL and Nalin CM (1982) J Biol Chem 257, 2874–2881

    Google Scholar 

  36. Czarnecki JJ, Abbott MS and Selman BR (1983) Eur J Biochem 136, 19–24

    Google Scholar 

  37. Datta DB, Ryrie IJ and Jagendorf AT (1974) J Biol Chem 249, 4404–4411

    Google Scholar 

  38. DeBenedetti E and Jagendorf A (1979) Biochem Biophys Res Commun 86, 440–446

    Google Scholar 

  39. deHeij JT and Groot GSP (1981) FEBS Lett 134, 6–9

    Google Scholar 

  40. Deno H, Shinozaki K and Sugiura M (1983) Nucl Acids Res 11, 2185–2191

    Google Scholar 

  41. Deters DW, Racker E, Nelson N and Nelson H (1975) J Biol Chem 250, 1041–1047

    Google Scholar 

  42. Dunn SD and Heppel LA (1981) Arch Biochem Biophys 210, 421–436

    Google Scholar 

  43. Ellis RJ (1981) Ann Rev Plant Physiol 32, 111–137

    Google Scholar 

  44. Ellis RJ and Hartley MR (1982) in Methods in Chloroplast Molecular Biology (M. Edelman et al., eds.), Elsevier Biomedical, Amsterdam, The Netherlands, pp. 169–188

    Google Scholar 

  45. Esch FS and Allison WS (1978) J Biol Chem 253, 6100–6106

    Google Scholar 

  46. Esch FS, Böhlen P, Otsuka AS, Yoshida M and Allison WS (1981) J Biol Chem 256, 9084–9089

    Google Scholar 

  47. Farron F (1970) Biochemistry 9, 3823–3828

    Google Scholar 

  48. Farron F and Racker E (1970) Biochemistry 9, 3829–3836

    Google Scholar 

  49. Fillingame RH (1980) Ann Rev Biochem 49, 1079–1113

    Google Scholar 

  50. Foster DL and Fillingame RH (1982) J Biol Chem 257, 2009–2015

    Google Scholar 

  51. Futai M and Kanazawa H (1983) Microbiol Rev 47, 285–312

    Google Scholar 

  52. Gepshtein A and Carmeli C (1974) Eur J Biochem 44, 593–602

    Google Scholar 

  53. Gepshtein A and Carmeli C (1977) Eur J Biochem 74, 463–469

    Google Scholar 

  54. Gepshtein A, Carmeli C and Nelson N (1978) FEBS Lett 85, 219–223

    Google Scholar 

  55. Girault G and Galmiche J-M (1977) Eur J Biochem 77, 501–510

    Google Scholar 

  56. Gray MW and Doolittle WF (1982) Microbiol Rev 46, 1–42

    Google Scholar 

  57. Gromet-Elhanan Z and Khananshvili D (1984) Biochemistry 23, 1022–1028

    Google Scholar 

  58. Harris DA (1978) Biochim Biophys Acta 463, 245–273

    Google Scholar 

  59. Harris DA and Slater EC (1975) Biochim Biophys Acta 387, 335–348

    Google Scholar 

  60. Herrin D, Michaels A and Hickey E (1981) Biochim Biophys Acta 655, 136–145

    Google Scholar 

  61. Hesse H, Jank-Ladwig R and Strotmann H (1976) Z Naturforsch 31c, 445–451

    Google Scholar 

  62. Hicks DB and Yocum CF (1984) In Advances in Photosynthesis Research, Vol. II, (C Sybesma, ed.), Martinus Nijhoff/Dr W. Junk Publishers, pp. 599–602

  63. Hochman A and Carmeli C (1971) FEBS Lett 13, 36–40

    Google Scholar 

  64. Hochman Y and Carmeli C (1981) Biochemistry 20, 6287–6292

    Google Scholar 

  65. Hochman Y, Lanir A and Carmeli C (1976) FEBS Lett 61, 255–259

    Google Scholar 

  66. Hoffman-Falk H, Mattoo AK, Marder JB, Edelman M and Ellis RJ (1982) J Biol Chem 257, 4583–4587

    Google Scholar 

  67. Howe CJ, Bowman CM, Dyer TA and Gray JC (1982) Mol Gen Genet 186, 525–530

    Google Scholar 

  68. Howe CJ, Bowman CM, Dyer TA and Gray JC (1983) Mol Gen Genet 190, 51–55

    Google Scholar 

  69. Hulla FW, Hocket M, Risiand S and Dose K (1976) Eur J Biochem 67, 469–476

    Google Scholar 

  70. Humbert R, Brusilow WSA, Gunsalus RP, Klionsky DJ and Simoni RD (1983) J Bacteriol 153, 416–422

    Google Scholar 

  71. Jagendorf AT (1982) in Methods in Chloroplast Molecular Biology (M Edelman et al eds.), Elsevier Biomedical Press, pp. 881–898

  72. Johansson BC, Baltscheffsky M, Baltscheffsky H, Baccarini-Melandri A and Melandri BA (1973) Eur J Biochem 40, 109–117

    Google Scholar 

  73. Kagawa Y (1978) Adv Biophys 10, 209–247

    Google Scholar 

  74. Kagawa Y and Racker E (1966) J Biol Chem 241, 2461–2482

    Google Scholar 

  75. Kagawa Y, Sone N, Hirata H and Yoshida M (1979) J Bioenerg Biomembranes 11, 39–78

    Google Scholar 

  76. Kagawa Y, Sone N, Yoshida M, Hirata H and Okamoto H (1976) J Biochem 80, 141–151

    Google Scholar 

  77. Kagawa Y and Yoshida M (1979) Methods in Enzymol 40, 781–787

    Google Scholar 

  78. Kahn JS (1982) Plant Physiol 70, 451–455

    Google Scholar 

  79. Kanazawa H, Horiuchi Y, Takagi M, Ishino Y and Futai M (1980) J Biochem 88, 695–703

    Google Scholar 

  80. Kayalar C, Rosing J and Boyer PD (1977) J Biol Chem 252, 2486–2491

    Google Scholar 

  81. Khananshvili D and Gromet-Elhanan Z (1982) J Biol Chem 257, 11377–11383

    Google Scholar 

  82. Khananshvili D and Gromet-Elhanan Z (1983) J Biol Chem 258, 3720–3725

    Google Scholar 

  83. Kirk JTO and Tilney-Bassett RAE (1978) in The Plastids, Elsevier/North-Holland Biomedical Press, Amsterdam, The Netherlands

    Google Scholar 

  84. Kneusel RE, Merchant S and Selman BR (1982) Biochim Biophys Acta 681, 337–344

    Google Scholar 

  85. Knowles AF and Penefsky HS (1972) J Biol Chem 247, 6617–6623

    Google Scholar 

  86. Kozlov IA, Milgrom YM and Tsybovski IS (1980) Biochem J 192, 483–488

    Google Scholar 

  87. Krebbers ET, Larrinua IM, McIntosh L and Bogorad L (1982) Nucl Acids Res 10, 4985–5002

    Google Scholar 

  88. Lardy HA and Elvehjem CA (1945) Ann Rev Biochem 14, 1–30

    Google Scholar 

  89. Lien S, Berzborn R and Racker E (1972) J Biol Chem 247, 3520–3524

    Google Scholar 

  90. Lien S and Racker E (1971) Methods in Enzymol 23, 547–555

    Google Scholar 

  91. Loyola-Guzman A and Vallejos RH (1983) Biochim Biophys Acta 724, 427–432

    Google Scholar 

  92. Lubberding HJ, Offerijns F, Vel WAC and deVries PJR (1981) in Photosynthesis II. Electron Transport and Photophosphorylation (Akoyunoglou G, ed.), Balaban International Science Services, Philadelphia, p. 779–788

    Google Scholar 

  93. Lunardi J, Satre M, Bof M and Vignais PV (1979) Biochem 18, 5310–5316

    Google Scholar 

  94. Margulies MM (1983) Eur J Biochem 137, 241–248

    Google Scholar 

  95. McCarty RE and Carmeli C (1982) in Photosynthesis: Energy Consersion by Plants and Bacteria Vol 1 (Govindjee, ed.), Academic Press, Inc. pp. 647–695

  96. McCarty RE and Racker E (1968) J Biol Chem 243, 129–137

    Google Scholar 

  97. McEvoy FA and Lynn WS (1973) Arch Biochem Biophys 156, 335–341

    Google Scholar 

  98. Mélèse T (1983) Fed Proc 42, 1938, Abstract No: 1054

  99. Mendiola-Morgenthaler LR, Morgenthaler J-J and Price CA (1976) FEBS Lett 62, 96–100

    Google Scholar 

  100. Merchant S (1983) Ph.D. Thesis, University of Wisconsin, Madison.

  101. Merchant S and Selman BR (1983) Eur J Biochem 137, 373–376

    Google Scholar 

  102. Merchant S and Seiman BR (1984) In Advances in Photosynthesis Research, Vol. II, (C Sybesma, ed.), Martinus Nijhoff/Dr W. Junk Publishers, pp. 583–586

  103. Merchant S and Selman BR (1984) Plant Physiol, in press

  104. Merchant S, Shaner SL and Selman BR (1983) J Biol Chem 258, 1026–1031

    Google Scholar 

  105. Mitchell P (1961) Nature 191, 144–148

    Google Scholar 

  106. Mitchell P and Moyle J (1965) Nature 208, 147

    Google Scholar 

  107. Moase EH and Green BR (1981) Eur J Biochem 119, 145–150

    Google Scholar 

  108. Moroney JV, Lopresti L, McEwen BF, McCarty RE and Hammes GG (1983) FEBS Lett 158, 58–62

    Google Scholar 

  109. Moroney JV and McCarty RE (1981) in Energy Coupling in Photosynthesis (BR Selman, S Selman-Reimer, eds.), Elsevier/North-Holland, pp. 341–352

  110. Moroney JV and McCarty RE (1982) J Biol Chem 257, 5910–5914

    Google Scholar 

  111. Müller H, Neufang H and Knobloch K (1982) Eur J Biochem 127, 559–566

    Google Scholar 

  112. Müller HW, Schmitt M, Schneider E and Dose K (1979) Biochim Biophys Acta 545, 77–85

    Google Scholar 

  113. Myers SP, Molin WT, Selman BR and Schrader LE (1982) Plant Physiol 70, 1715–1717

    Google Scholar 

  114. Nechushtai R and Nelson N (1981) J Biol Chem 256, 11624–11628

    Google Scholar 

  115. Nechushtai R, Nelson N, Mattoo AK and Edelman M (1981) FEBS Lett 125, 115–119

    Google Scholar 

  116. Nelson N (1976) Biochim Biophys Acta 456, 314–338

    Google Scholar 

  117. Nelson N (1980) Methods in Enzymology 69, 301–313

    Google Scholar 

  118. Nelson N, Deters DW, Nelson H and Racker E (1973) J Biol Chem 248, 2049–2055

    Google Scholar 

  119. Nelson N and Hauska G (1979) in Membrane Bioenergetics (Lee CP et al, eds.), Addison-Wesley Publishing Co, Inc, pp. 189–202

  120. Nelson N and Karny O (1976) FEBS Lett 70, 249–253

    Google Scholar 

  121. Nelson N, Nelson H and Racker E (1972) J Biol Chem 247, 6506–6510

    Google Scholar 

  122. Nelson N, Nelson H and Schatz G (1980) Proc Natl Acad Sci USA 77, 1361–1364

    Google Scholar 

  123. Noumi T and Kanazawa H (1983) Biochem Biophys Res Commun 111, 143–149

    Google Scholar 

  124. Ohta S, Tsuboi M, Yoshida M and Kagawa Y (1980) Biochemistry 19, 2160–2165

    Google Scholar 

  125. Owers-Narhi L, Robinson SJ, DeRoo CS and Yocum CF (1979) Biochem Biophys Res Commun 90, 1025–1031

    Google Scholar 

  126. Paradies HH and Kagawa Y (1982) FEBS Lett 137, 25–29

    Google Scholar 

  127. Paradies HH, Zimmermann J and Schmidt UD (1978) J Biol Chem 253, 8972–8979

    Google Scholar 

  128. Penefsky HS (1974) in The Enzymes, Vol. X, 3rd ed. (Boyer PD ed.), Academic Press, New York, pp. 375–394

    Google Scholar 

  129. Penefsky HS, Pullman ME, Datta A and Racker E (1960) J Biol Chem 235, 3330–3336

    Google Scholar 

  130. Philosoph S, Binder A and Gromet-Elhanan Z (1977) J Biol Chem 252, 8747–8752

    Google Scholar 

  131. Philosoph S and Gromet-Elhanan Z (1981) Eur J Biochem 119, 107–113

    Google Scholar 

  132. Philosoph S and Gromet-Elhanan Z (1981) in Photosynthesis II. Electron Transport and Photophosphorylation (G Akoyunoglou, ed.), Balaban International Science Services, Philadelphia, PA, pp. 741–751

    Google Scholar 

  133. Piccioni RG, Bennoun P and Chua N-H (1981) Eur J Biochem 117, 93–102

    Google Scholar 

  134. Pick U and Bassilian S (1982) Biochemistry 21, 6144–6152

    Google Scholar 

  135. Pick U, Conrad PL, Conrad JM, Durbin RD and Selman BR (1982) Biochim Biophys Acta 682, 55–58

    Google Scholar 

  136. Posorke L and Jagendorf AT (1976) Arch Biochem Biophys 177, 276–283

    Google Scholar 

  137. Pougeols R, Satre M and Vignais P (1979) Biochemistry 18, 1408–1413

    Google Scholar 

  138. Price CA and Reardon EM (1982) in Methods in Chloroplast Molecular Biology (M Edelman et al, eds.), Elsevier Biomedical, Amsterdam, The Netherlands, pp. 189–209

    Google Scholar 

  139. Pucheu NL and Berzborn RJ (1984) In Advances in Photosynthesis Research, Vol. II, (C Sybesma, ed.), Martinus Nijhoff/Dr W. Junk Publishers, pp. 571–574

  140. Pullman ME and Monroy GC (1963) J Biol Chem 238, 3762–3769

    Google Scholar 

  141. Ravizzini RA, Andreo CS and Vallejos RH (1980) Biochim Biophys Acta 591, 135–141

    Google Scholar 

  142. Rochaix J-D (1981) Experientia 37, 323–332

    Google Scholar 

  143. Rott R and Nelson N (1981) J Biol Chem 256, 9224–9228

    Google Scholar 

  144. Runswiek MJ and Walker JE (1983) J Biol Chem 258, 3081–3089

    Google Scholar 

  145. Sakurai H, Shinohara K, Hisabori T and Shinohara K (1981) J Biochem 90, 95–102

    Google Scholar 

  146. Saraste M, Gay NJ, Eberle A, Runswick MJ and Walker JE (1981) Nucl Acids Res 9, 5287–5296

    Google Scholar 

  147. Satre M, Lunardi J, Pougeois R and Vignais PV (1979) Biochemistry 18, 3134–3140

    Google Scholar 

  148. Saunders VA (1982) in Photosynthesis: Development, Carbon Metabolism and Plant Productivity. Vol. II (Govindjee, ed.), Academic Press, pp. 17–42

  149. Selman BR and Durbin R (1978) Biochim Biophys Acta 502, 29–37

    Google Scholar 

  150. Selman-Reimer S, Finel M, Pick U and Selman BR (1984) In Advances in Photosynthesis Research, Vol. II, (C Sybesma, ed.), Martinus Nijhoff/Dr W. Junk Publishers, pp. 567–570

  151. Selman-Reimer S, Merchant S and Selman BR (1981) Biochemistry 20, 5476–5482

    Google Scholar 

  152. Selman-Reimer S, Merchant S and Selman BR (1981) in Energy Coupling in Photosynthesis (BR Selman, SSelman-Reimer, eds.), Elsevier-North-Holland, The Netherlands, pp. 341–352

    Google Scholar 

  153. Senior AE, Fayle DRH, Downie JA, Gibson F and Cox GB (1979) Biochem J 180, 111–118

    Google Scholar 

  154. Senior AE, Langman L, Cox GB and Gibson F (1983) Biochem J 210, 395–403

    Google Scholar 

  155. Senior AE and Wise JG (1983) J Membrane Biol 73, 105–124

    Google Scholar 

  156. Shavit N (1980) Ann Rev Biochem 49, 111–138

    Google Scholar 

  157. Shinozaki K and Sugiura M (1982) Nucl Acids Res 10, 4923–4934

    Google Scholar 

  158. Shoshan V, Shavit N and Chipman DM (1978) Biochim Biophys Acta 504, 108–122

    Google Scholar 

  159. Shoshan V and Selman BR (1980) J Biol Chem 255, 384–389

    Google Scholar 

  160. Steele JA, Uchytil TF, Durbin RD, Bhatnagar P and Rich DH (1976) Proc Natl Acad Sci USA 73, 2245–2248

    Google Scholar 

  161. Stan-Lotter H and Bragg PD (1984) Arch Biochem Biophys 229, 320–328

    Google Scholar 

  162. Strotmann H, Brendel K, Boos KS and Schlimme E (1982) FEBS Lett 145, 11–15

    Google Scholar 

  163. Strotmann H, Hesse H and Edelmann K (1973) Biochim Biophys Acta 314, 202–210

    Google Scholar 

  164. Süss K-H and Manteuffel R (1983) FEBS Lett 153, 134–140

    Google Scholar 

  165. Süss K-H and Schmidt O (1982) FEBS Lett 144, 213–218

    Google Scholar 

  166. Tiedge H, Schäfer G and Mayer F (1983) Eur J Biochem 132, 37–45

    Google Scholar 

  167. Tiefert MA (1981) in Proceedings of the Fifth International Congress on Photosynthesis Research, Vol. II (G Akoyunoglou, ed.), Balaban International Services, Philadelphia, PA, pp. 893–902

    Google Scholar 

  168. Todd RD, Griesenbeck TA and Douglas MG (1980) J Biol Chem 255, 5461–5467

    Google Scholar 

  169. Vallejos RH (1981) in Energy Coupling in Photosynthesis (BR Selman and S Selman-Reimer, eds), Elsevier North Holland, Inc, pp. 129–140

  170. Vambutas VK and Racker E (1965) J Biol Chem 240, 2660–2667

    Google Scholar 

  171. Viale A, Vallejos R and Jagendorf AT (1981) Biochim Biophys Acta 637, 496–503

    Google Scholar 

  172. Wagenvoord RJ, Verschoor GJ and Kemp A (1981) Biochim Biophys Acta 634, 229–236

    Google Scholar 

  173. Walker JE, Runswick MJ and Saraste M (1982) FEBS Lett 146, 393–396

    Google Scholar 

  174. Walker JE, Saraste M, Runswick MJ and Gay NJ (1982) The EMBO J 8, 945–951

    Google Scholar 

  175. Watanabe A and Price CA (1982) Proc Natl Acad Sci USA 79, 6304–6308

    Google Scholar 

  176. Weiss MA and McCarty RE (1977) J Biol Chem 252, 8007–8012

    Google Scholar 

  177. Westhoff P, Nelson N, Bünemann H and Herrmann RG (1981) Curr Genet 4, 109–120

    Google Scholar 

  178. Whitfeld PR and Bottomley W (1983) Ann Rev Plant Physiol 34, 279–310

    Google Scholar 

  179. Wise JG, Latchney LR and Senior AE (1981) J Biol Chem 256, 10383–10389

    Google Scholar 

  180. Wolf M, Binder A and Bachofen R (1981) Eur J Biochem 118, 423–427

    Google Scholar 

  181. Yoshida M, Allison WS, Esch FS and Futai M (1982) J Biol Chem 257, 10033–10037

    Google Scholar 

  182. Yoshida M, Okamoto H, Sone H, Hirata H and Kagawa Y (1977) Proc Natl Acad Sci USA 74, 936–940

    Google Scholar 

  183. Yoshida M, Sone N, Hirata H and Kagawa Y (1977) J Biol Chem 252, 3480–3485

    Google Scholar 

  184. Yoshida M, Sone H, Hirata H, Kagawa Y and Ui N (1979) J Biol Chem 254, 9525–9533

    Google Scholar 

  185. Younis HM and Morjana NA (1982) FEBS Lett 140, 317–319

    Google Scholar 

  186. Younis HM and Morjana NA (1982) FEBS Lett 140, 320–324

    Google Scholar 

  187. Younis HM, Winget GD and Racker E (1977) J Biol Chem 252, 1814–1818

    Google Scholar 

  188. Zurawski G, Bottomley W and Whitfield PR (1982) Proc Natl Acad Sci USA 79, 6260–6264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, S., Selman, B.R. Photosynthetic ATPases: purification, properties, subunit isolation and function. Photosynth Res 6, 3–31 (1985). https://doi.org/10.1007/BF00029044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00029044

Key words

Navigation