Skip to main content
Log in

Destabilization of pea lectin by substitution of a single amino acid in a surface loop

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Legume lectins are considered to be antinutritional factors (ANF) in the animal feeding industry. Inactivation of ANF is an important element in processing of food. In our study on the stability ofPisum sativum L. lectin (PSL), a conserved hydrophobic amino acid (Val103) in a surface loop was replaced with alanine. The mutant lectin, PSL V103A, showed a decrease in unfolding temperature (T m ) by some 10 °C in comparison with wild-type (wt) PSL, and the denaturation energy (ΔH) is only about 55% of that of wt PSL. Replacement of an adjacent amino acid (Phe104) with alanine did not result in a significant difference in stability in comparison with wt PSL. Both mutations did not change the sugarbinding properties of the lectin, as compared with wt PSL and with PSL from pea seeds, at ambient temperatures. The double mutant, PSL V103A/F104A, was produced inEscherichia coli, but could not be isolated in an active (i.e. sugar-binding) form. Interestingly, the mutation in PSL V103A reversibly affected sugar-binding at 37 °C, as judged from haemagglutination assays. These results open the possibility of production of lectins that are activein planta at ambient temperatures, but are inactive and possibly non-toxic at 37 °C in the intestines of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker JW, Reeke GN, Wang JL, Cunningham BA, Edelman GM: The covalent and three-dimensional structure of concanavalin A. J Biol Chem 250: 1513–1524 (1975).

    Google Scholar 

  2. Boulter JM, Edwards GA, Gatehouse AMR, Gatehouse JA, Hilder VA: Additive protective effect of different plant derived insect resistance genes in transgenic tobacco plants. Crop Prot 9: 351–354 (1990).

    Google Scholar 

  3. Bourne Y, Rougé P, Cambillau C: X-ray structure of a (α-Man(1–3)β-Man(1–4)GlcNAc)-lectin complex at 2.1 Å resolution. J Biol Chem 265: 18161–18165 (1990).

    Google Scholar 

  4. Chrispeels MJ, Raikhel NV: Lectins, lectin genes, and their role in plant defence. Plant Cell 3: 1–9 (1991).

    Google Scholar 

  5. Díaz CL, Hosselet M, Logman GJJ, van Driessche E, Lugtenberg EJJ, Kijne JW: Distribution of glucose/ mannose-specific isolectins in pea (Pisum sativum L.). Planta 181: 451–461 (1990).

    Google Scholar 

  6. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg EJJ, Kijne JW: Root lectin as a determinant of host-plant specificity in theRhizobium-legume symbiosis. Nature 338: 579–581 (1989).

    Google Scholar 

  7. Díaz CL, van Spronsen PC, Bakhuizen R, Logman GJJ, Lugtenberg BJJ, Kijne JW: Correlation between infection byRhizobium leguminosarum and lectin on the surface ofPisum sativum L. roots. Planta 168: 350–359 (1986).

    Google Scholar 

  8. Eijsink VGH, van der Zee JR, van der Burg B, Vriend G, Venema G: Improving the thermostability of the neutral protease ofBacillus stearothermophilus by replacing a buried asparagine by leucine. Prot Eng 282(1): 13–16 (1991).

    Google Scholar 

  9. Einspahr H, Parks EH, Phillips SR, Suddath FL: Crystal structure studies of Legume lectins. In: Bøg-Hansen TC, Freed DLJ (eds) Lectins: Biology, Biochemistry, Clinical Biochemistry, pp. 245–263. Sigma Chemical Company, St Louis, MO (1988).

    Google Scholar 

  10. Einspahr H, Parks EH, Suguna K, Subramanian E, Suddath FL: The crystal structure of pea lectin at 3.0-Å resolution. J Biol Chem 261: 16518–16527 (1986).

    Google Scholar 

  11. Eriksson AE, Baase WA, Zhang X-J, Heinz DW, Blaber M, Baldwin EP, Matthews BW: Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science 255: 178–183 (1992).

    Google Scholar 

  12. Fontana A: Analysis and modulation of protein stability. Curr Opin Biotechnol 2: 551–560 (1991).

    Google Scholar 

  13. Gatehouse JA, Bown D, Evans IM, Gatehouse LN, Jobes D, Preston P, Croy RRD: Sequence of the seed lectin gene from pea (Pisum sativum L.). Nucl Acids Res 15: 7642 (1987).

    Google Scholar 

  14. Hendriks HGCJM, Koninkx JFJG, Draaijer M, van Dijk JE, Raaijmakers JAM, Mouwen JMVM: Quantitative determination of the lectin binding capacity of small intestinal brush-border membrane. An enzyme linked lectin sorbent assay (ELLSA). Biochim Biophys Acta 905: 371–375 (1987).

    Google Scholar 

  15. Higgins TJV, Chandler PM, Zurawski G, Button SC, Spencer D: The biosynthesis and primary structure of pea seed lectin. J Biol Chem 258: 9544–9549 (1983).

    Google Scholar 

  16. Huisman J, van der Poel AFB, Kik MJL, Mouwen JMVM: Performance and organ weights of piglets, rats and chickens fed diets containingPisum sativum. J Anim Physiol Anim Nutr 63: 273–279 (1990).

    Google Scholar 

  17. Huisman J, van der Poel AFB, Verstegen MWA, van Weerden EJ: Antinutritional factors (ANF) in pig nutrition. Wld Rev Anim Prod 25: 77–82 (1990).

    Google Scholar 

  18. Jaenicke R: Protein stability and molecular adaptation to extreme conditions. Eur J Biochem 202: 715–728 (1991).

    Google Scholar 

  19. Kaminski PA, Buffard D, Strosberg AD: The pea lectin gene family contains only one functional gene. Plant Mol Biol 9: 497–507 (1987).

    Google Scholar 

  20. Kijne JW, van der Schaal IAM, de Vries GE: Pea lectins and the recognition ofRhizobium leguminosarum. Plant Sci Lett 18: 65–74 (1980).

    Google Scholar 

  21. Lugtenberg BJJ, Meyers J, Peters R, van der Hoek P, van Alphen L: Electrophoretic resolution of the major outer membrane protein ofEscherichia coli K12 into 4 bands. FEBS Lett 58: 254–258 (1975).

    Google Scholar 

  22. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  23. Matsumura M, Becktel WJ, Levitt M, Matthews BW: Stabilisation of phage T4 lysozyme by engineered disulfide bonds. Proc Natl Acad Sci USA 86: 6562–6566 (1989).

    Google Scholar 

  24. Matthews BW, Nicholson H, Becktel WJ: Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci USA 84: 6663–6667 (1987).

    Google Scholar 

  25. Prasthofer T, Phillips SR, Suddath FL, Engler J: Design, expression, and characterisation of recombinant lectin from the garden pea (Pisum sativum). J Biol Chem 264: 6793–6796 (1988).

    Google Scholar 

  26. Pusztai A: Effects on gut structure, function and metabolism of dietary lectins. The nutritional toxicity of the kidney bean lectin. In: Franz H (ed.) Advances in Lectin Research, pp. 74–86. Springer-Verlag, Berlin (1989).

    Google Scholar 

  27. Reeke GN, Becker JW: Three-dimensional structure of Favin: Saccharide binding-cyclic permutation in leguminous lectins. Science 242: 1108–1111 (1986).

    Google Scholar 

  28. Richardson JS, Richardson DC: Some design principles: Betabellin. In: Oxender DL, Fox CF (eds) Protein Engineering, pp. 149–163. Alan R.Liss, New York (1987).

    Google Scholar 

  29. Sanger F, Nicklen S, Coulson AS: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    Google Scholar 

  30. Shaanan B, Lis H, Sharon N: Structure of a legume lectin with an ordered N-linked carbohydrate in complex with lactose. Science 254: 862–866 (1991).

    Google Scholar 

  31. Sharon N, Lis H: Lectins, p. 127. Chapman and Hall, London (1989).

    Google Scholar 

  32. Sharon N, Lis H: Legume lectins: a large family of homologous proteins. FASEB J 4: 3198–3208 (1990).

    Google Scholar 

  33. Stubbs ME, Carver JP, Dunn RJ: Production of pea lectin inEscherichia coli. J Biol Chem 261: 6141–6144 (1986).

    Google Scholar 

  34. van Eijsden RR, Hoedemaeker PJ, Díaz CL, Lugtenber BJJ, de Pater BS, Kijne JW: Mutational analysis of pea lectin. Replacement of Asn125 by Asp in the monosaccharide binding site eliminates mannose/glucose binding activity. Plant Mol Biol 20: 1049–1058 (1992).

    Google Scholar 

  35. Vriend G, Berendsen JC, van der Zee JR, van den Burg B, Venema G, Eijsink VGH: Stabilization of the neutral protease ofBacillus stearothermophilus by removal of a buried water molecule. Prot Eng 4: 941–945 (1991).

    Google Scholar 

  36. Yannisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC 19 vectors. Gene 33: 103–119 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoedemaeker, F.J., van Eijsden, R.R., Díaz, C.L. et al. Destabilization of pea lectin by substitution of a single amino acid in a surface loop. Plant Mol Biol 22, 1039–1046 (1993). https://doi.org/10.1007/BF00028976

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00028976

Key words