Skip to main content
Log in

Examination of the effect of wastewater on the productivity of Lake Zürich water using indigenous phytoplankton batch culture bioassays

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phytoplankton batch cultures were used to study the effect of biologically and chemically treated wastewater on algal growth in water from Lake Zürich. The question of whether the influence of sewage on the biomass production corresponds solely to the nutrient content of the sewage was also considered. The relationship between net microbial production (y, in 0.1 N KMnO4 consumption) and total phosphorus concentration (x, in µg P/1) was found to be characterized by the equation y = 2.12 ln x − 4.12. The fact that net microbial production is strongly dependent on total phosphorus concentration emphasizes the significance of the latter for the trophic state of Lake Zürich. We recommend the introduction of additional purification of all sewage entering the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Public Health Association, 1975. Standard methods for the examination of water and wastewater. Washington, 1193 pp.

  • Betschart, B., 1979. Die Verwendung von Biotesten zur Untersuchung des eutrophierenden Einflusses der Zürcher Abwässer auf die Limmat. Ph.D. Thesis, University of Zürich, Switzerland, 84 pp.

    Google Scholar 

  • Bómbowna, M. & H. Bucka, 1972. Bioassay and chemical composition of some Carpathian rivers. Verh. int. Ver. Limnol. 18: 735–741.

    Google Scholar 

  • Bossard, P. & H. Ambühl, 1974. Der Einfluss von gereinigtem Abwasser auf das Phytoplankton in Seen. Schweiz. Z. Hydrol. 36: 187–200.

    Google Scholar 

  • Chiaudini, G. & M. Vighi, 1974. The N: P ratio and tests with Selenastrum to predict eutrophication in lakes. Wat. Res. 8: 1063–1069.

    Google Scholar 

  • Claesson, A. & A. Forsberg, 1978. Algal assay procedure with one or five species. Minitest. Mitt. int. Ver. Limnol. 21: 21–30.

    Google Scholar 

  • Couture, P., S. A. Visser, R. Van Coillie & C. Blaise, 1985. Algal bioassays: their significance in monitoring water quality with respect to nutrients and toxicants. Schweiz. Z. Hydrol. 47: 127–158.

    Google Scholar 

  • Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, 1981. Lieferungen 1–9. Verlag Chemie, Weinheim/Bergstr., BRD, 257 pp.

  • Dunstan, W. & D. Menzel, 1971. Continuous cultures of natural populations of phytoplankton in dilute, treated sewage effluent. Limnol. Oceanogr. 16: 623–632.

    Google Scholar 

  • Eidgenössische Richtlinien für die Untersuchung von Abwasser und Oberflächenwasser, 1982. Eidgenössisches Departement des Innern, Bern, 68 pp.

  • Forsberg, A. & A. Claesson, 1981. Algal assays with wastewater to determine the availability of phosphorus for algal growth. Verh. int. Ver. Limnol. 21: 763–769.

    Google Scholar 

  • Gargas, E., 1978. The effect of sewage (mechanically, biologically and chemically treated) on algal growth. Mitt. int. Ver. Limnol. 21: 110–124.

    Google Scholar 

  • Gaur, J. P. & H. P. Kumar, 1986. Effects of oil refinery effluents on Selenastrum capricomutum Printz. Int. Rev. Ges. Hydrobiol. 71: 271–281.

    Google Scholar 

  • Hecky, R. E. & P. Kilham, 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796–822.

    Google Scholar 

  • Källqvist, T., 1975. Algal growth potential of six Norwegian waters receiving primary, secondary and tertiary sewage effluents. Verh. int. Ver. Limnol. 19: 2070–2081.

    Google Scholar 

  • Miller, W. E. & T. E. Maloney, 1971. Effects of secondary and tertiary wastewater effluents on algal growth in a lake-river system. J. Wat. Pollut. Cont. Fed. 42: 2361–2365.

    Google Scholar 

  • Mitscherlich, E. A., 1909. Das Gesetz vom Minimum und das Gesetz des abnehmenden Bodenertrags. Landw. Jahrb. 38: 537–552.

    Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. Amer. Sci. 46: 205–221.

    Google Scholar 

  • Sachs, L., 1974. Angewandte Statistik. Springer Verlag, Berlin, BRD, 548 pp.

    Google Scholar 

  • Schanz, F., 1974. Wachstumsansprüche der Cladophoracee Rhizoclonium hieroglyphicum Kütz. in Reinkultur. Ph.D. Thesis, University of Zürich, Switzerland, 140 pp.

    Google Scholar 

  • Schanz, F. & P. Pleisch, 1981. Bioteste zum Vergleich von drei neuen, parallel betriebenen Verfahren zur weitestgehenden Phosphor-Elimination (4. Reinigungsstufe). Gas Wass. Abwass. 61: 6–11.

    Google Scholar 

  • Schanz, F. & H. Juon, 1983. Two different methods of evaluating nutrient limitations of periphyton bioassays using water from the river Rhine and eight of its tributaries. Hydrobiologia 102: 187–195.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1969. Biometry. W. H. Freeman & Comp., San Francisco, 776 pp.

    Google Scholar 

  • Thomas, E. A., 1953. Empirische und experimentelle Untersuchungen zur Kenntnis der Minimumstoffe in 46 Seen der Schweiz und angrenzender Gebiete. Monatsbull. Schweiz. Ver. Gas Wasserfachmänner 9: 1–15.

    Google Scholar 

  • Thomas, R. L. & M. Munawar, 1985. The delivery and bioavailability of particulate bound phosphorus in Canadian rivers tributory to the Great Lakes. In J. N. Lester & P. W. W. Kirk (eds.), Proc. Internat. Conf.: Management Strategies for phosphorus in the Environment. Lisbon, Portugal, 462–469 pp.

  • Wagner, R., 1969. Neue Aspekte in der Stickstoff-Analytik. Vom Wass. 36: 263–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmacher, C., Schanz, F. Examination of the effect of wastewater on the productivity of Lake Zürich water using indigenous phytoplankton batch culture bioassays. Hydrobiologia 188, 229–235 (1989). https://doi.org/10.1007/BF00027788

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027788

Key words

Navigation