Skip to main content
Log in

Diverse soybean actin transcripts contain a large intron in the 5′ untranslated leader: structural similarity to vertebrate muscle actin genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plant actins are encoded by complex and highly divergent multigene families. Despite the general lack of intron conservation in animal, fungal and protist actin genes, evidence is presented which indicates that higher plant actin genes have an untranslated leader exon with structural similarity to that found in vertebrate actin genes. All functional higher plant actin genes sequenced to date contain a potential intron acceptor site in the 5′ untranslated region 10 to 13 nucleotides upstream of the initiator ATG. A leader specific cDNA probe hybridized to sequences over 1.0 kbp upstream from the coding region confirming the presence of an upstream exon. Primer extension of mRNA with gene-specific oligonucleotides was used to analyze the 5′ untranslated exon and leader intron from four divergent soybean actin genes, SAc3, 4, 6 and 7. The 5′ ends of all four mRNAs are heterogeneous. The consensus promoter elements of the SAc7 actin promoter were identified. Gene specific primer extension sequencing of actin mRNAs indicated that splicing of the 5′ leader intron occured at the predicted acceptor site in SAc6 and SAc7. The SAc6 and SAc7 5′ untranslated exons are small (88–111 nt) and the leader introns are relatively large (844–1496 nt). The presence of an intron within the 5′ RNA leader and an intron which splits a glycine codon at position 152 in all plant actin genes and all vertebrate muscle actin genes suggests that these structures may have been conserved due to a functional role in actin expression. The 5′ regions of these two soybean actin genes contain many unusual features including (CT) repeats and long stretches of pyrimidine-rich DNA. The possible roles of the upstream exon/intron and the C + T-rich regions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird V, Meagher RB: A complex gene family encodes actin in petunia. EMBO J 6: 3223–3231 (1987).

    PubMed  Google Scholar 

  2. Balcarek JM, McMorris FA: DNase I hypersensitive sites of globin genes of uninduced friend erythroleukemia cells and changes during induction with dimethyl sulfoxide. J Biol Chem 258: 10622–10628 (1983).

    PubMed  Google Scholar 

  3. Bergsma DJ, Chang KS, Schwartz RJ: Novel chicken actin gene: third cytoplasmic isoform. Mol Cell Biol 5: 1151–1162 (1985).

    PubMed  Google Scholar 

  4. Bernues J, Beltran R, Casasnovas JM, Azorin F: Structural polymorphism of homopurine-homopyrimidine sequences: the secondary DNA structure adopted by a d(GA.CT)22 sequence in the presence of zinc ions. EMBO J 8: 2087–2094 (1989).

    PubMed  Google Scholar 

  5. Bornstein P, McKay J, Liska DL, Apone S, Devarayalu S: Interactions between the promoter and first intron are involved in transcriptional control of α1(I) collagen gene expression. Mol Cell Biol 8: 4851–4857 (1988).

    PubMed  Google Scholar 

  6. Bravo R, Fey SJ, Small JV, Larsen PM, Celis JE: Coexistence of three major isoactins in a single sarcoma 180 cell. Cell 25: 195–202 (1981).

    Article  PubMed  Google Scholar 

  7. Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD: Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 85: 836–840 (1988).

    PubMed  Google Scholar 

  8. Brown JW: A Catalogue of splice junction and putative branch point sequences from plant introns. Nucl Acids Res 14: 9549–9559 (1986).

    PubMed  Google Scholar 

  9. Buchman AR, Berg P: Comparison of Intron-Dependent and intron-independent gene expression. Mol Cell Biol 8: 4395–4405 (1988).

    PubMed  Google Scholar 

  10. Callis J, Fromm M, Walbot V: Introns increase gene expression in cultured maize cells. Genes and Devel 1: 1183–1200 (1987).

    Google Scholar 

  11. Chouh C-C, Davis RC, Fuller ML, Slovin JP, Wong A, Wright J, Kania S, Shaked R, Gatti RA, Salser WA: g-actin: Unusual mRNA 3′-untranslated sequence conservation and amino acid substitution that may be cancer related. Proc Natl Acad Sci USA 84: 2575–2579 (1987).

    PubMed  Google Scholar 

  12. Coulombe B, Ponton A, Daigneault L, Williams BRG, Skup D: Presence of transcription regulatory elements within an intron of the virus-inducible murine TIMP gene. Mol Cell Biol 8: 3227–3234 (1988).

    PubMed  Google Scholar 

  13. DePonti-Zilli L, Seiler-Tuyns A, Paterson BM: A 40-base pair sequence in the 3′ end of the β-actin gene regulates β-actin mRNA transcription during myogenesis. Proc Natl Acad Sci USA 85: 1389–1393 (1988).

    PubMed  Google Scholar 

  14. Dibb NJ, Newman AJ: Evidence that introns arose at proto-splice sites. EMBO J 8: 2015–2021 (1989).

    PubMed  Google Scholar 

  15. Eick D, Piehaczyk M, Henglein B, Blanchard J-M, Traub B, Kofler E, Wiest S, Lenoir GM, Bornkamm GW: Aberrant c-myc RNAs of Burkitt's lymphoma cells have longer half-lives. EMBO J 4: 3717–3725 (1985).

    PubMed  Google Scholar 

  16. Evans MJ, Scarpulla RC: Both upstream and intron elements are required for elevated expression of the rat somatic cytochrome c gene in COS-1 cells. Mol Cell Biol 8: 35–41 (1988).

    PubMed  Google Scholar 

  17. Frederickson RM, Micheau MR, Iwamoto A, Miyamoto NG: 5′ Flanking and first intron sequence of the human β-actin gene required for efficient promoter activity. Nucl Acids Res 17: 253–270 (1989).

    PubMed  Google Scholar 

  18. Galson DL, Housman DE: Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse β-globin intervening sequence 2. Mol Cell Biol 8: 381–392 (1988).

    PubMed  Google Scholar 

  19. Gillies SD, Folsom V, Tonegawa S: Cell type-specific enhancer element associated with a mouse MHC gene, E b. Nature 310: 594–597 (1984).

    PubMed  Google Scholar 

  20. Glikin GC, Gargiulo G, Rena-Descalzi L, Worcel A: Escherichia coli single-strand binding protein stabilizes specific denatured sites in superhelical DNA. Nature 303: 770–774 (1983).

    PubMed  Google Scholar 

  21. Goodall GJ, Filipwicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Article  PubMed  Google Scholar 

  22. Hanley BA, Schuller MA: Plant intron sequences: evidence for distant groups of introns. Nucl Acids Res 16: 7159–7176 (1988).

    PubMed  Google Scholar 

  23. Hawkins JD: A survey of intron and exon lengths. Nucl Acids Res 16: 9893–9908 (1988).

    PubMed  Google Scholar 

  24. Heilig R, Muraskowsky R, Mandel J: The ovalbumin gene family. The 5′ end region of the X and Y genes. J Mol Biol 156: 1–19 (1982).

    Article  PubMed  Google Scholar 

  25. Heller M, Flemington E, Kieff E, Deininger P: Repeat arrays in cellular DNA related to the Epstein-Barr virus IR3 repeat. Mol Cell Biol 5: 457–465 (1985).

    PubMed  Google Scholar 

  26. Hentschel CC: Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295: 714–714 (1982).

    PubMed  Google Scholar 

  27. Hightower RC, Meagher RB: Divergence and differential expression of soybean actin genes. EMBO J 4: 1–8 (1985).

    PubMed  Google Scholar 

  28. Hightower RC, Meagher RB: The molecular evolution of actin. Genetics 114: 315–332 (1986).

    PubMed  Google Scholar 

  29. Hoffman-Liebermann B, Liebermann D, Troutt A, Kedes LH, Cohen SN: Human homologs of TU transposon sequences: Polupurine/polypyrimidine sequences elements that can alter DNA conformation in vitro and in vivo. Mol Cell Biol 6: 3632–3642 (1986).

    PubMed  Google Scholar 

  30. Jackson WT: In: Lloyd CW (ed) The Cytoskeleton in Plant Growth and Development, pp, 3–29. Academic Press, New York (1982).

    Google Scholar 

  31. Kamiya N: Physical and chemical basis of cytoplasmic streaming. Annu Rev Plant Physiol 32: 205–236 (1982).

    Article  Google Scholar 

  32. Kawamoto T, Makino K, Niwa H, Sugiyama H, Kimura S, Amemura M, Nakata A, Kakunaga T: Identification of the human β-actin enhancer and its binding factor. Mol Cell Biol 8: 267–272 (1988).

    PubMed  Google Scholar 

  33. Kozak M: Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol 7: 3438–3445 (1987).

    PubMed  Google Scholar 

  34. Langford CJ, Klinz F-J, Donath C, Gallwitz D: Point mutations identify the conserved intron-contained TACTAAC box as an essential splicing signal sequence in yeast. Cell 36: 645–653 (1984).

    Article  PubMed  Google Scholar 

  35. Larsen A, Weintraub H: An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29: 606–622 (1982).

    Article  Google Scholar 

  36. Liebermann D, Hoffman-Liebermann B, Troutt AB, Kedes L, Cohen SN: Sequences from sea urchin TU transposons are conserved among multiple eucaryotic species, including humans. Mol Cell Biol 6: 218–226 (1986).

    PubMed  Google Scholar 

  37. Lin C-S, Ng S-Y, Gunning P, Kedes L, Leavitt J: Identification and order of sequential mutations in β-actin genes isolated from increasingly tumorigenic human fiberblast strains. Proc Natl Acad Sci USA 82: 6995–6999 (1985).

    PubMed  Google Scholar 

  38. Mason AJ, Evans BA, Cox DR, Shine J, Richards RI: Structure of mouse kallikrein gene family suggests a role in specific processing of biologically active peptides. Nature 303: 300–307 (1983).

    PubMed  Google Scholar 

  39. McKnight TD: DNA Sequences at the Five Prime Ends of Plant Genes. PhD Thesis, University of Georgia (1983).

  40. McLean Md, Baird WmV, Gerats AGM, Meagher RB: Determination of copy number, and linkage relationships among five actin gene subfamilies in Petunia hybrida. Plant Mol Biol 11: 663–672 (1988).

    Google Scholar 

  41. Metcalf TN, Szabo LJ, Schubert KR, Wang JL: Ultra-structural and immunochemical analyses of the distribution of microfilaments in seedlings and plants of Glycine max. Protoplasma 120: 91–99 (1984).

    Google Scholar 

  42. Mohun TJ, Taylor MV, Garrett N and Gurdon JB: The CArG promoter sequence is necessary for muscle-specific transcription of the cardiac actin gene in Xenopus embryos. EMBO J 8: 1153–1161 (1989).

    PubMed  Google Scholar 

  43. Naharro G, Robbins KC, Reddy EP: Gene product of ν-fgr onc: Hybrid protein containing a portion of actin and a tyrosine-specific protein kinase. Science 223: 63–66 (1984).

    PubMed  Google Scholar 

  44. Nairn CJ, Winesett L, Ferl RJ: Nucleotide sequence of an actin gene from Arabidopsis thaliana. Gene 65: 247–257 (1988).

    Article  PubMed  Google Scholar 

  45. Nakajima-lijima S, Hamada H, Reddy P, Kakunaga T: Molecular structure of the human β-actin gene: Interspecies homology of sequences in the introns. Proc Natl Acad Sci USA 82: 6133–6137 (1985).

    PubMed  Google Scholar 

  46. Ng S-Y, Gunning P, Eddy R, Ponte P, Leavitt J, Shows T, and Kedes L: Evolution of the functional human β-actin gene and its multi-pseudogene family: Conservation of noncoding regions and chromosomal dispersions of pseudogenes. Mol Cell Biol 5: 2720–2732 (1985).

    PubMed  Google Scholar 

  47. Kamoto H, Hiromoi Y, Ishikawa E, Yamada T, Isoda K, Maekawa H, Hotta Y: Molecular characterization of mutant actin genes which induce heat-shock proteins in Drosophila flight muscles. EMBO J 5: 589–596 (1986).

    Google Scholar 

  48. Pesacreta TC, Carley WW, Webb WW, Parthsarathy MV: F-actin in conifer roots. Proc Natl Acad Sci USA 79: 2898–2901 (1982).

    Google Scholar 

  49. Pikielny CW, Teem JL, Rosbash M: Evidence for the biochemical role of an internal sequence in yeast nuclear mRNA introns: Implications for U1 RNA and Metazoan mRNA splicing. Cell 34: 395–403 (1983).

    Article  PubMed  Google Scholar 

  50. Rabbitts PH, Forster A, Stinson MA, Rabbitts TH: Truncation of exon 1 from the c-myc gene results in prolonged c-myc mRNA stability. EMBO J 4: 3727–3733 (1985).

    PubMed  Google Scholar 

  51. Reece K, Wu R: Cloning and analysis of actin genes from rice. In Galau G (ed) First Int Cong-Plant Mol Biol p9: OR-01-08 (abstract) (1985).

  52. Richards JE, Gilliam AC, Shen A, Tucker PW, Blattner FR: Unusual sequences in the murine immunoglobulin m-d heavy-chain region. Nature 306: 483–487 (1983).

    PubMed  Google Scholar 

  53. Ruskin B, Krainer AR, Maniatis T, Green MR: Excision of an intact intron as a novel lariat structure during pre-mRNA splicing in vitro. Cell 38: 317–331 (1984).

    Article  PubMed  Google Scholar 

  54. Schon E, Evans T, Welsch J, Efstratiadis A: Conformation of promoter DNA: Fine mapping of S1-hypersensitive structures. Cell 35: 837–848 (1983).

    Article  PubMed  Google Scholar 

  55. Sekiya T, Kuchino Y, Nishimura S: Mammalian tRNA genes: nucleotide sequence of rat genes for tRNAAsp, tRNAGly and tRNAGlu. Nucl Acids Res 9: 2239–2250 (1981).

    PubMed  Google Scholar 

  56. Shah DM, Hightower RC, Meagher RB: Complete nucleotide sequence of a soybean actin gen. Proc Natl Acad Sci USA 79: 1022–1026 (1982).

    Google Scholar 

  57. Shah DM, Hightower RC, Meagher RB: Genes encoding actin in higher plants: Intron positions are conserved but the encoding actin in higher plants: Intron positions are conserved but the coding sequences are not. J Mol Appl Genet 2: 111–126 (1983).

    PubMed  Google Scholar 

  58. Slightom JL, Blechl AE, Smithies O: Human fetal G γ- and A γ-globin genes: Complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638 (1980).

    Article  PubMed  Google Scholar 

  59. Taniguchi S′I, Kawano T, Kakunaga T, Baba T: Differences in expression of a variant actin between low and high metastatic B16 melanoma. J Biol Chem 261: 6100–6106 (1986).

    PubMed  Google Scholar 

  60. Ueyama H, Hamada H, Battula N, Kakunaga T: Structure of a human smooth muscle actin gene (aortic type) with a unique intron site. Mol Cell Biol 4: 1073–1078 (1984).

    PubMed  Google Scholar 

  61. Wright S, Rosenthal A, Flavell R, Grosveld F: DNA sequences required for regulated expression of β-globin genes in murine erythroleukemia cells. Cell 38: 265–273 (1984).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, L., Meagher, R.B. Diverse soybean actin transcripts contain a large intron in the 5′ untranslated leader: structural similarity to vertebrate muscle actin genes. Plant Mol Biol 14, 513–526 (1990). https://doi.org/10.1007/BF00027497

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027497

Key words

Navigation