, Volume 90, Issue 3, pp 307–313 | Cite as

Stability of cassava plants at the DNA level after retrieval from 10 years of in vitro storage

  • Fernando Angel
  • Victoria E. Barney
  • Joseph Tohme
  • William M. Roca


Cassava (Manihot esculenta Crantz) germplasm collections are conventionally maintained by continuous vegetative propagation in the field. Tissue culture techniques provide a more convenient way to conserve germplasm. The cassava in vitro gene bank held in trust at CIAT comprises nearly 6000 accessions. A study was carried out to determine whether any DNA rearrangements resulting from in vitro storage under slow growth could be detected by molecular analysis in retrieved plants. RFLPs with homologous probes, RAPDs with twenty primers and DNA fingerprinting with M13 probe were tested to detect variation at DNA level in cassava plants after ten-years in vitro storage. The molecular marker data obtained in this study supports the stability of the cassava germplasm under the in vitro storage conditions described in this work.

Key words

cassava in vitro storage genetic stability RFLPs RAPDs Manihot esculenta 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Angel F., D.I. Arias, J. Tohme, C. Iglesias & W.M. Roca, 1993. Toward the construction of a molecular map of cassava (Manihot esculenta Crantz): comparison of restriction enzymes and probe sources in detecting RFLPs. J Biotechnol 31: 103–113.Google Scholar
  2. Arumuganathan K. & E.D. Earle, 1991. Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9: 208–218.Google Scholar
  3. Bellamy R., C. Inglehearn, D. Lester, A. Hardcastle & S. Bhattacharya, 1990. Better fingerprinting with PCR. Trends in Genet 6: 32.Google Scholar
  4. Brown P.T.H., 1989. DNA methylation in plants and its role in tissue culture. Genome 31: 717–729.Google Scholar
  5. Brown P.T.H., E. Gobel & H. Lorz, 1991. RFLP analysis of Zea mays callus cultures and their regenerated plants. Theor Appl Genet 81: 227–232.Google Scholar
  6. CIAT, 1990. Biotechnology Research Unit. Annual Report.Google Scholar
  7. Escobar, R., G. Mafla & W.M. Roca, 1994. Cryopreservation for long term conservation of cassava (Manihot esculenta Crantz) genetic diversity. VII International Congress of Plant Tissue and Cell Culture. Abstract S9-17. Firenze, Italy.Google Scholar
  8. FAO, 1991. Food outlook. FAO, Rome, Italy.Google Scholar
  9. Feinberg A. & B. Vogelstein, 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 132: 6–13.Google Scholar
  10. Gomez R., F. Angel, M. Bonierbale, F. Rodriguez, J. Tohme & W.M. Roca, 1995. Selecting heterozygous parents and single-dose markers for genetic mapping in cassava. In: CBN II. Proceedings of the Second International Scientific Meeting of the Cassava Biotechnology Network. Bogor, Indonesia, August 22–26, 1994. In: A.M. Thro & W.M. Roca (Eds.), CIAT, Cali, Colombia, pp. 113–124.Google Scholar
  11. Harding K., 1994. Molecular stability of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphytica 55: 141–146.Google Scholar
  12. Kaeppler S.M. & R.L. Philips, 1993. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol 29P: 125–130.Google Scholar
  13. Lozano J.V. & B.L. Nolt, 1989. Pest and pathogens of cassava. In: R.P. Kahn (Ed.), Plant Protection and Quarantine. 2. Selected Pests and Pathogens of Quarantine Significance, Vol. 2, pp. 169–182. Boca Raton, Florida. CRC Press Inc.Google Scholar
  14. Mueller E., P.T.H. Brown, S. Hartke & H. Lorz, 1990. DNA variation in tissue-culture-derived rice plants. Theor Appl Genet 80: 673–679.Google Scholar
  15. Murashige T. & F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.Google Scholar
  16. Ocampo C., F. Angel, A. Jimenez, G. Jaramillo, C. Hershey, E. Granados & C. Iglesias, 1995. DNA fingerprinting to confirm possible genetic duplicates in cassava germplasm. In: CBN II. Proceedings of the Second International Scientific Meeting of the Cassava Biotechnology Network, Bogor, Indonesia. August 22–26, 1994. In: A.M. Thro & W.M. Roca (Eds.), CIAT, Cali, Colombia, pp. 145–151.Google Scholar
  17. Potter R. & M.G.K. Jones, 1991. An assessment of genetic stability of potato in vitro by molecular and phenotypic analysis. Plant Sci 76: 239–248.Google Scholar
  18. Quemeda H., E.J. Toth & K.G. Lork, 1987. Changes in methylation of tissue cultured soybean cells detected by digestion with the restriction enzymes Hpa II and Msp I. Plant Cell Rep 6: 63–66.Google Scholar
  19. Ramirez H., A. Hussain, W.M. Roca & W. Bushuk, 1987. Isozyme electrophoregrams of sixteen enzymes in five tissues of cassava (Manihot esculenta Crantz). Euphytica 36: 39–48.Google Scholar
  20. Roca W.M., R. Chavez, M.L. Marin, D.I. Arias, G. Mafla & R. Reyes, 1989. In vitro methods of germ-plasm conservation. Genome 31: 813–817.Google Scholar
  21. Roca W.M., B. Nolt, G. Mafla, J. Roa & R. Reyes, 1991. Eliminacion de virus y propagacion de clones en la yuca (Manihot esculenta Crantz). In: W.M. Roca & L.A. Mroginski (Eds.), Cultivo de Tejidos en la Agricultura: Fundamentos y Aplicaciones, pp. 403–420. Centro Internacional de Agricultura Tropical, Cali, Colombia.Google Scholar
  22. Roca, W.M., R. Escobar & G. Mafla, 1994. Conservacion de germoplasma de yuca in vitro: principios y tecnicas. Centro Internacional de Agricultura Tropical (Documento interno). 66 p.Google Scholar
  23. Rogstad S.H., J.C. PattonII & B.A. Schall, 1988. M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc Natl Acad Sci USA 85: 9170–9178.Google Scholar
  24. Sabir A., H.J. Newbury, G. Todd, J. Catty & B.V. Ford-Lloyd, 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor Appl Genet 84: 113–117.Google Scholar
  25. Sambrook J., E.F. Fritsch & T. Maniatis, 1989. Molecular Cloning, a Laboratory Manual. Second edition. Cold Spring Harbor Laboratory Press, New York.Google Scholar
  26. Vassart G., M. Georges, R. Monsieur, H. Brocas, A.S. Laquarre, D. Cristophe, 1987. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684.Google Scholar
  27. Westneat D.F., W.A. Noon, H.K. Reeve & C.F. Aquuadro, 1988. Improved hybridization conditions for DNA fingerprints probed with M13. Nucl Acids Res 9: 4161.Google Scholar
  28. Withers L.A. & J.T. Williams, 1985. In vitro conservation. Research Highlights, International Board for Plant Genetic Resources, Rome, Italy.Google Scholar
  29. Williams J.G.K., A.R. Rublik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified with arbitrary primers are useful as genetic markers. Nucl Acids Res 18: 6531–6535.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Fernando Angel
    • 1
  • Victoria E. Barney
    • 1
  • Joseph Tohme
    • 1
  • William M. Roca
    • 1
  1. 1.Biotechnology Research Unit, Centro Internacional de Agricultura TropicalCIATCaliColombia

Personalised recommendations