Advertisement

Hydrobiologia

, Volume 100, Issue 1, pp 245–260 | Cite as

Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw.

  • P. J. Say
  • B. A. Whitton
Article

Abstract

An account is given of methods developed to monitor heavy metals in rivers by measuring the concentration of these metals in Fontinalis antipyretica Hedw. Key features of the standard method recommended include the harvesting of materials from microhabitats with fast current speeds wherever possible, thorough washing in field and laboratory, use of terminal 2-cm lengths of shoot, drying at 105°C and digestion in 2 M HNO3. In order to establish the extent to which this species is useful and to provide baseline data with which others can compare their own observations, samples of moss, water and sediments were harvested for analysis from 52 different sites in northern England and Belgium. Significant positive correlations were obtained between Cu and Zn in 2-cm tips and in both (total) water and sediment, but in the case of Cd and Pb only between 2-cm tips and sediment. Multiple stepwise regression was used to quantify the apparent influence of environmental variables. For instance, with Pb in the moss as the dependent variable, significant influences were found for Zn in the moss (+ve) aqueous Mn (+ve) and filtrable reactive phosphate (−ve). Variables which were significant were incorporated in each case into equations to predict the concentration of metal that would be expected if allowance was made for the concentrations of all these variables at each site. In the case of Pb, r2 = 0.075 for metal in moss versus aqueous metal, whereas r2 = 0.879 for metal in moss versus the predicted value for metal in moss. This suggests that the lack of correlation between Pb in moss and Pb in water was probably due largely to the influence of other variables. For Cd, the difference was less: r2 = 0.013 and r2 = 0.47, respectively. A principal components analysis was also carried out, with measurements of water and moss as the variables ordinated. An example is given of the use of the moss to monitor intermittent Zn pollution in R. Wear.

Keywords

zinc cadmium lead accumulation rivers monitor Fontinalis antipyretica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almestrand, A., Almestrand, A. & Bergren, H., 1983. Rönneå. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.Google Scholar
  2. Brown, D. H. & Buck, G. W., 1979. Desiccation effects and cation distribution in bryophytes. New Phytol. 82: 115–125.Google Scholar
  3. Burton, M. A. S. & Peterson, P. J., 1979. Metal accumulation by aquatic bryophytes from polluted mine streams. Envir. Pollut. 19: 39–46.Google Scholar
  4. Butcher, R. W., 1933. Studies on the ecology of rivers. I. On the the River Itchen. J. Ecol. 15: 55–65.Google Scholar
  5. Butcher, R. W., 1933. Studies on the ecology of rivers. 1. On the distribution of macrophytic vegetation in the rivers in Britain. J. Ecol. 21: 58–91.Google Scholar
  6. Crum, H. A. & Anderson, L. E., 1981. Mosses of Eastern North America, 2. Columbia University Press, N.Y.: 665–1328.Google Scholar
  7. Descy, J.-P. & Empain, A., 1983. Meuse. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.Google Scholar
  8. Dietz, F., 1973. The enrichment of heavy metals in submerged plants. In: Jenkins, S. H. (ed.). Advances in Water Pollution Research. 6th Int. Conf., Jerusalem, 1972. Pergamon Press, Oxford; N.Y.: 53–60.Google Scholar
  9. Edwards, R. W., Benson-Evans, K., Learner, M. A., Williams, P. & Williams, R., 1972. A biological survey of the R. Taff. Wat. Pollut. Cont. 71: 144–166.Google Scholar
  10. Empain, A., 1973. La végétation bryophytique aquatique et subaquatique de la Sambre belge, son déterminisme écologique et ses relations avec la pollution des eaux. Lejeunia, N. Ser. 69: 1–58.Google Scholar
  11. Empain, A., 1976. Les bryophytes aquatiques utilisés comme traceurs de la contamination en métaux lourds des eaux douces. Mém. Soc. r. Bot. Belg. 7: 141–156.Google Scholar
  12. Empain, A., 1977. Ecologie des Populations Bryophytiques Aquatiques de la Meuse, de la Sambre et de la Somme. Mém. Doct. Sci. Bot., Univ. Liège, Belg., 179 pp.Google Scholar
  13. Empain, A., 1978. Relations quantitatives entre les populations de bryophytes aquatiques et la pollution des eaux courantes. Définition d'un indice de qualité des eaux. Hydrobiologia 60: 49–74.Google Scholar
  14. Empain, A., Lambinon, J., Mouvet, C. & Kirchmann, R., 1980. Utilisation des bryophytes aquatiques et subaquatiques comme indicateurs biologiques de la qualité des eaux courantes. In: Pesson, P. (ed.). La Pollution des Eaux Continentales, 2nd ed. Gauthier-Villars, Paris: 195–223.Google Scholar
  15. Fox, D. J. & Guire, K. E., 1976. Documentation for MIDAS, 3rd ed. Statist. Res. Lab., Univ. Mich., Ann Arbor, 203 pp.Google Scholar
  16. Frost, W. E., 1942. R. Liffey survey. 4. The fauna of submerged ‘mosses’ in an acid and an alkaline water. Proc. r. Acad. Ireland B 13: 293–369.Google Scholar
  17. Glime, J. M., 1968. Ecological observations on some bryophytes in Appalachian mountain streams. Castanea 33: 300–325.Google Scholar
  18. Grube, H. J., 1975. Die Makrophytenvegetation der Fliessgewässer in Süd-Niedersachsen und ihre Beziehungen zur Gewässerverschmutzung. Arch. Hydrobiol. Suppl. 45: 376–456.Google Scholar
  19. Harding, J. P. C., 1981. Macrophytes as Monitors of River Water Quality in the Southern N.W.W.A. Area. Ref. No. TS-BS-81-2 Northwest Water Authority, Warrington, Engl., 54 pp.Google Scholar
  20. Harding, J. P. C. & Whitton, B. A., 1981. Accumulation of zinc, cadmium and lead by field populations of Lemanea. Wat. Res. 15: 301–319.Google Scholar
  21. Heise, P., 1983. Gudenå. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.Google Scholar
  22. Heuff, H. & Horkan, K., 1983. Caragh. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.Google Scholar
  23. Holmes, N. T. H., Lloyd, E. J. H., Potts, M. & Whitton, B. A., 1972. Plants of the River Tyne and future water transfer scheme. Vasculum 57: 56–78.Google Scholar
  24. Holmes, N. T. H. & Whitton, B. A., 1975. Macrophytes of the River Tweed. Trans. bot. Soc. Edinb. 42: 369–381.Google Scholar
  25. Holmes, N. T. H. & Whitton, B. A., 1977a. The macrophytic vegetation of the River Tees in 1975: observed and predicted changes. Freshwat. Biol. 7: 43–60.Google Scholar
  26. Holmes, N. T. H. & Whitton, B. A., 1977b. Macrophytic vegetation of the River Swale, Yorkshire. Freshwat. Biol. 7: 545–558.Google Scholar
  27. Institute for Social Research, 1980. OSIRIS IV User's Manual, 6th ed. 254 pp. Inst. Social Res., Unvi. Mich., Ann Arbor, 254 pp.Google Scholar
  28. Kohler, A., Vollrath, H. & Beisl, E., 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefass-Makrophyten und Fliessgewässersystem Moosach (Müncher Ebene). Arch. Hydrobiol. 69: 333–365.Google Scholar
  29. McLean, R. O. & Jones, A. K., 1975. Studies of tolerance to heavy metals in the flora of the rivers Ystwyth and Clarach, Wales. Freshwat. Biol. 5: 431–444.Google Scholar
  30. Mead, R., 1971. A note on the use and the misuse of regression models in ecology. J. Ecol. 59: 215–219.Google Scholar
  31. Mouvet, C., 1980. Pollution de l'Amblève par les métaux lourds, en particulier le chrome: dosages dans les eaux er les bryophytes aquatiques. Bull. cent. bel. Étud. Docum. Eaux 445, 33: 527–538.Google Scholar
  32. Muhle, H., Scherrer, M. & Winkler, S., 1979. Wassermoose in der Nebenflussen der Donau um Ulm. Mitt. Ver. Naturwiss. Math. Ulm 30: 115–129.Google Scholar
  33. Pickering, D. C. & Puia, I. L., 1969. Mechanism for the uptake of zinc by Fontinalis antipyretica. Physiol. pl. 22: 653–661.Google Scholar
  34. Richards, P. W., 1947. The introduction of Fontinalis antipyretica Hedw. into South Africa and its biological effects. Trans. br. bryol. Soc. 1: 16.Google Scholar
  35. Say, P. J., Diaz, B. M. & Whitton, B. A., 1977. Influence of zinc on lotic plants. 1. Tolerance of Hormidium species to zinc. Freshwat. Biol. 7: 257–376.Google Scholar
  36. Say, P. J., Harding, J. P. C. & Whitton, B. A., 1981. Aquatic mosses as monitors of heavy metal contamination in the River Etherow, England. Envir. Pollut. Ser. B 2: 295–307.Google Scholar
  37. Sirjola, E., 1969. Aquatic vegetation of the River Teuronjoki, South Finland and its relation to water velocity. Ann. bot. fenn. 6: 68–75.Google Scholar
  38. Skulberg, O. M. & Lillehammer, A., 1983. Glåma. In: Whitton, B. A. (ed.). Ecology of European Rivers. Blackwell Scientific Publications, Oxford.Google Scholar
  39. Smith, A. J. E., 1978. The Moss Flora of Britain and Ireland. Cambridge University Press, Cambridge, 706 pp.Google Scholar
  40. Sommer, C. S. & Winkler, S., 1982. Reaktionen im Gaswechsel von Fontinalis antipyretica HEDW. nach experimentellen Belastungen mit Schwermetallverbindungen. Arch. Hydrobiol. 93: 503–524.Google Scholar
  41. Stern, M. S. & Stern, D. H., 1968. A limnological study of a Tennessee cold springbook. Am. Midl. Nat. 82: 62–82.Google Scholar
  42. Watson, E. V., 1968. British Mosses and Liverworts. 2nd ed. Cambridge University Press, Cambridge; 495 pp.Google Scholar
  43. Weber-Oldecop, D. W., 1970. Water plant communities in eastern Lower Saxony (1). Int. Revue ges. Hydrobiol. 55: 913–967.Google Scholar
  44. Wehr, J. D., Empain, A., Mouvet, C., Say, P. J. & Whitton B. A., in press. Methods for processing aquatic mosses used as monitors for heavy metals. Wat. Res.Google Scholar
  45. Wehr, J. D. & Whitton, B. A., in press a. Accumulation of heavy metals by aquatic mosses. 2. Rhynchostegium riparioides.Google Scholar
  46. Wehr, J. D. & Whitton, B. A., in press b. Accumulation of heavy metals by aquatic mosses. 3. Seasonal effects.Google Scholar
  47. Welch, W. A., 1960. A Monograph of the Fontinalaceae. M. Nijhoff, The Hague, Neth.Google Scholar
  48. Welsh, R. P. H. & Denny, P., 1980. The uptake of lead and copper by submerged aquatic macrophytes in two English lakes. J. Ecol. 68: 443–455.Google Scholar
  49. Whitton, R. P. H., Say, P. J. & Wehr, J. D., 1981. Use of plants to monitor heavy metals in rivers. In: Say, P. J. & Whitton, B. A. (eds). Heavy Metals in Northern England: Environmental and Biological Aspects. Dep. Bot., Univ. Durham, Engl.: pp. 135–145.Google Scholar
  50. Whitton, B. A., Say, P. J. & Jupp, B. P., 1982. Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Envir. Pollut. Ser. B 3: 299–316.Google Scholar
  51. Williams, R. S., 1930. Some deep-water mosses. Bryologist 33: 32.Google Scholar

Copyright information

© Dr W. Junk Publishers 1983

Authors and Affiliations

  • P. J. Say
    • 1
  • B. A. Whitton
    • 1
  1. 1.Department of BotanyUniversity of DurhamDurhamEngland

Personalised recommendations