Skip to main content
Log in

Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The frxC gene, one of the unidentified open reading frames present in liverwort chloroplast DNA, shows significant homology with the nifH genes coding for the Fe protein, a component of the nitrogenase complex (Ohyama et al., 1986, Nature 322: 572–574). A truncated form of the frxC gene was designed to be over-expressed in Escherichia coli and an antibody against this protein was prepared using the purified product as an antigen. This antibody reacted with a protein in the soluble fraction of liverwort chloroplasts, which had an apparent molecular weight of 31 000, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in good agreement with a putative molecular weight of 31945 deduced from the DNA sequence of the frxC gene. In a competitive inhibition experiment, the antigenicity of this protein was indicated to be similar to that of the over-expressed protein in E. coli. Therefore, we concluded that the frxC gene was expressed in liverwort chloroplasts and that its product existed in a soluble form. The molecular weight of the frxC protein was approximately 67 000, as estimated by gel filtration chromatography, indicating that the frxC protein may exist as a dimer of two identical polypeptides analogous to the Fe protein of nitrogenase. The results obtained from affinity chromatography supported the possibility that the frxC protein, which possesses a ATP-binding sequence in its N-terminal region that is conserved among various other ATP-binding proteins, has the ability to bind ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann E, Brosius J: ‘ATG vector’ for regulated high-level expression of cloned genes in Escherichia coli. Gene 40: 183–190 (1985).

    Article  PubMed  Google Scholar 

  2. Apte SK, Thomas J: Nitrogen fixation genes (nifH,D,K) in the filamentous nonheterocystous cyanobacterium Plectonema boryanum do not arrange. J Genet 66: 101–110 (1987).

    Google Scholar 

  3. Ausubel FM, Cannon FC: Molecular genetic analysis of Klebsiella pneumoniae nitrogen-fixation genes. Cold Spring Harbor Symp Quant Biol 45: 487–492 (1980).

    Google Scholar 

  4. Brosius J, Ertle M, Storella J: Spacing of the −10 and −35 regions in the tac promoter: effect on its in vivo activity. J Biol Chem 260: 3539–3541 (1985).

    PubMed  Google Scholar 

  5. Burnette WN: ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195–203 (1981).

    PubMed  Google Scholar 

  6. Burris RH: Nitrogen fixation—assay methods and techniques. Meth Enzymol 24: 415–431 (1972).

    PubMed  Google Scholar 

  7. Charette MR, Henderson GW, Markovitz A: ATP hydrolysis-dependent protease activity of the lon(capR) protein of Escherichia coli K-12. Proc Natl Acad Sci USA 78: 4728–4732 (1981).

    PubMed  Google Scholar 

  8. Chung CH, Goldberg AL: The product of the lon(capR) gene in E. coli is the ATP-dependent protease La. Proc Natl Acad Sci USA 78: 4931–4935 (1981).

    PubMed  Google Scholar 

  9. Fish LE, Küch U, Bogorad L: Two partially homologous adjacent light-inducible maize chloroplast genes encoding polypeptides of the P700 chlorophyll a-protein complex of photosystem I. J Biol Chem 260: 1413–1421 (1985).

    PubMed  Google Scholar 

  10. Hausinger RP, Howard JB: The amino acid sequence of the nitrogenase iron protein from Azotobacter vinelandii. J. Biol Chem 257: 2483–2490 (1982).

    PubMed  Google Scholar 

  11. Hausinger RP, Howard JB: Thiol reactivity of the nitrogenase Fe-protein from Azotobacter vinelandii. J Biol Chem 258: 13486–13492 (1983).

    PubMed  Google Scholar 

  12. Hearst JE, Alberti M, Doolittle RF: A putative nitrogenase reductase gene found in the nucleotide sequences from the photosynthetic gene cluster of R. capsulata. Cell 40: 219–220 (1985).

    Article  PubMed  Google Scholar 

  13. Hennecke H, Kaluza K, Thöny B, Fuhrmann M, Ludwig W, Stackebrandt E: Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142: 342–348 (1985).

    Google Scholar 

  14. Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW, Hermodson MA: A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323: 448–450 (1986).

    PubMed  Google Scholar 

  15. Hunkapiller MW, Lujan E, Ostrander F and Hood LE: Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Meth Enzymol 91: 227–236 (1983).

    PubMed  Google Scholar 

  16. Jones R, Haselkorn R: The DNA sequence of the Rhodobacter capsulatus nifH gene. Nucleic Acids Res 16: 8735 (1988).

    PubMed  Google Scholar 

  17. Kelly JL, Greenleaf AL, Lehman IR: Isolation of the nuclear gene encoding a subunit of the yeast mitochondrial RNA polymerase. J Biol Chem 261: 10348–10351 (1986).

    PubMed  Google Scholar 

  18. Kohchi T, Shirai H, Fukuzawa H, Sano T, Komano T, Umesono K, Inokuchi H, Ozeki H, Ohyama K: Structure and organization of Marchantia polymorpha chloroplast genome IV: inverted repeat and small single copy region. J Mol Biol 203: 353–372 (1988).

    Article  PubMed  Google Scholar 

  19. Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).

    PubMed  Google Scholar 

  20. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  21. Marston FAO: The purification of eukaryotic polypeptides expressed in Escherichia coli. In: Glover DM (ed) DNA Cloning, vol 3. IRL Press, Oxford (1987).

    Google Scholar 

  22. Mevarech M, Rice D, Haselkorn R: Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci USA 77: 6476–6480 (1980).

    Google Scholar 

  23. Mortenson LE, Thorneley RN: Structure and function of nitrogenase. Ann Rev Biochem 48: 387–418 (1979).

    Article  PubMed  Google Scholar 

  24. Mullet JE: Chloroplast development and gene expression. Ann Rev Plant Physiol Plant Mol Biol 39: 475–502 (1988).

    Article  Google Scholar 

  25. Oh-oka H, Takahashi Y, Wada K, Matsubara H, Ohyama K, Ozeki H: The 8 kDa polypeptide in photosystem I is a probable candidate of an iron-sulfur center protein coded by the chloroplast gene frxA. FEBS Lett 218: 52–54 (1987).

    Article  Google Scholar 

  26. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574 (1986).

    Google Scholar 

  27. Ohyama K, Fukuzawa H, Kohchi T, Sano T, Sano S, Shirai H, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Structure and organization of Marchantia polymorpha chloroplast genome I: cloning and gene identification. J Mol Biol 203: 281–298 (1988).

    Article  PubMed  Google Scholar 

  28. Ohyama K, Kohchi T, Sano T, Yamada Y: Newly identified groups of genes in chloroplasts. Trends Biochem Sci 13: 19–22 (1988).

    Article  PubMed  Google Scholar 

  29. Ohyama K, Wetter LR, Yamano Y, Fukuzawa H, Komano T: A simple method for isolation of chloroplast DNA from Marchantia polymorpha L. cell suspension culture. Agric Biol Chem 46: 237–242 (1982).

    Google Scholar 

  30. Ono K: Callus formation in liverwort, Marchantia polymorpha. Jap J Genet 48: 69–70 (1973).

    Google Scholar 

  31. Ono K, Ohyama K, Gamborg OL: Regeneration of the liverwort Marchantia polymorpha L. from protoplasts isolated from cell suspension culture. Plant Sci Lett 14: 225–229 (1979).

    Google Scholar 

  32. Orme-Johnson WH: Molecular basis of biological nitrogen fixation. Ann Rev Biophys Biophys Chem 14: 419–459 (1985).

    Article  Google Scholar 

  33. Rao RN, Rogers SG: Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7: 79–82 (1979).

    Article  PubMed  Google Scholar 

  34. Robson RL: Identification of possible adenine nucleotide-binding sites in nitrogenase Fe- and MoFe-proteins by amino acid sequence comparison. FEBS Lett 173: 394–398 (1984).

    Article  PubMed  Google Scholar 

  35. Schumann JP, Waitches GM, Scolnik PA: A DNA fragment hybridizing to a nif probe in Rhodobacter capsulatus is homologous to a 16S rRNA gene. Gene 48: 81–92 (1986).

    Article  PubMed  Google Scholar 

  36. Shapira SK, Chou J, Richaud FV, Casadaban MJ: New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an essentially active carboxy-terminal portion of β-galactosidase. Gene 25: 71–82 (1983).

    Article  PubMed  Google Scholar 

  37. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049 (1986).

    Google Scholar 

  38. Souillard N, Magot M, Possot O, Sibold L: Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J Mol Evol 27: 65–76 (1988).

    PubMed  Google Scholar 

  39. Stewart WDP, Lex M: Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Mikrobiol 73: 250–260 (1970).

    PubMed  Google Scholar 

  40. Tanaka M, Haniu M, Yasunobu KT, Mortenson LE: The amino acid sequence of Clostridium pasteurianum iron protein, a component of nitrogenase III: the NH2-terminal and COOH-terminal sequences, tryptic peptides of large cyanogen bromide peptides, and the complete sequence. J Biol Chem 252: 7093–7100 (1977).

    PubMed  Google Scholar 

  41. Vieira J, Messing J: The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268 (1982).

    Article  PubMed  Google Scholar 

  42. Walker JE, Saraste M, Runswick MJ, Gay NJ: Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1: 945–951 (1982).

    PubMed  Google Scholar 

  43. Wolfe KH, Sharp PM: Identification of functional open reading frames in chloroplast genomes. Gene 66: 215–222 (1988).

    Article  PubMed  Google Scholar 

  44. Yanisch-Perron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

  45. Youvan DC, Bylina EJ, Alberti M, Begusch H, Hearst JE: Nucleotide and deduced polypeptide sequences of the photosynthetic reaction center, B870 antenna, and flanking polypeptides from R. capsulata. Cell 37: 949–957 (1984).

    Article  PubMed  Google Scholar 

  46. Zehnbauer BA, Markovitz A: Cloning of gene lon(capR) of Escherichia coli K-12 and identification of polypeptides specified by the cloned deoxyribonucleic acid fragment. J Bact 143: 852–863 (1980).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujita, Y., Takahashi, Y., Kohchi, T. et al. Identification of a novel nifH-like (frxC) protein in chloroplasts of the liverwort Marchantia polymorpha . Plant Mol Biol 13, 551–561 (1989). https://doi.org/10.1007/BF00027315

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027315

Key words

Navigation