Skip to main content
Log in

The Rubisco activase (rca) gene is located downstream from rbcS in Anabaena sp. strain CA and is detected in other Anabaena/Nostoc strains

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (rca) was found downstream from the rbcLrbcS operon in the heterocystous cyanobacterium Anabaena sp. strain CA. Two unknown open reading frames were shown to be located between rbcS and rca in strain CA and all the genes, rbcLrbcS, ORF1, ORF2, and rca were in the same transcriptional orientation. The deduced amino acid sequence of the Anabaena Rubisco activase showed both similarities and differences to the plant enzyme with considerable differences at the carboxy and amino termini. Proposed ATP-binding sites were conserved in the cyanobacterial protein. Recombinant cyanobacterial Rubisco activase, however, reacted with antisera to spinach Rubisco activase. Hybridization studies, using the Anabaena sp. strain CA rca gene as a heterologous probe, detected homologous sequences in heterocystous Anabaena/Nostoc strains but not in unicellular or nonheterocystous filamentous cyanobacteria, suggestive of a close evolutionary relationship of chloroplasts and heterocystous cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aitken A, Stanier RY: Characterization of peptidoglycan from the cyanelles of Cyanophora paradoxa. J Gen Microbiol 112: 219–223 (1979).

    Google Scholar 

  2. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology 1: 7.2.1–7.2.7. Wiley, New York (1989).

    Google Scholar 

  3. Baldauf SL, Palmer JD: Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265 (1990).

    Article  PubMed  Google Scholar 

  4. Birnboim HC, Doly J: A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl Acids Res 7: 1513–1517 (1979).

    PubMed  Google Scholar 

  5. Blake MS, Johnston KH, Russel-Jones GS, Gotschlich EC: A rapid sensitive method for detection of alkaline-phosphatase-conjugated anti-antibody on Western blots. Anal Biochem 136: 175–179 (1984).

    PubMed  Google Scholar 

  6. Borbely G, Simoncsits A: 3′-terminal conserved loops of 16S rRNAs from the cyanobacterium Synechococcus PCC 6301 and maize chloroplast differ only in two bases. Biochem Biophys Res Commun 101: 846–852 (1981).

    PubMed  Google Scholar 

  7. Boyer HB, Rouland-Sussaix D: A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41: 459–472 (1969).

    Article  PubMed  Google Scholar 

  8. Bryant DA, Stirewalt VL: The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Lett 259: 273–280 (1990).

    Article  PubMed  Google Scholar 

  9. Cambell WJ, Ogren WL: Electron transport through photosystem I stimulates light activation of ribulose bisphosphate carboxylase/oxygenase (Rubisco) by Rubisco activase. Plant Physiol 94: 479–484 (1990).

    Google Scholar 

  10. Campbell WJ, Ogren WL: A novel role for light in the activation of ribulose bisphosphate carboxylase/oxygenase. Plant Physiol 92: 110–115 (1990).

    Google Scholar 

  11. Cardon ZG, Mott KA: Evidence that ribulose 1,5-bisphosphate (RuBP) binds to inactive sites of RuBP carboxylase in vivo and an estimate of the rate constant for dissociation. Plant Physiol 89: 1253–1257 (1989).

    Google Scholar 

  12. Castenholz RW: Laboratory culture of thermophilic cyanophytes. Schweiz Z Hydrol 32: 538–551 (1970).

    Google Scholar 

  13. Cozens AL, Walker JE: The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301; support for an endosymbiotic origin of chloroplasts. J Mol Biol 194: 359–383 (1987).

    Article  PubMed  Google Scholar 

  14. Curtis SE, Haselkorn R: Isolation, sequence, and expression of two members of the 32kd thylakoid membrane protein gene family from the cyanobacterium Anabaena 7120. Plant Mol Biol 3: 249–258 (1984).

    Google Scholar 

  15. Curtis SE: Analysis of cyanobacterial ATP synthase gene: structure and evolution of the ATP synthase. In: Stevens SEJr., Bryant DA (eds) Light-energy transduction in photosynthesis: Higher Plants and Bacterial Models, pp. 305–319. Am. Soc. Plant Physiol., Rockville (1980).

    Google Scholar 

  16. Figurski D, Meyer R, Miller DS, Helinski DR: Generation in vitro of deletions in the broad host range plasmid RK2 using phage Mu insertions and a restriction endonuclease. Gene 1: 107–119 (1976).

    Article  PubMed  Google Scholar 

  17. Friedberg D, Kaplan A, Ariel R, Kessel M, Seijffers J: The 5′-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. strain PCC 7942 at the level of CO2 in air. J Bact 11: 6069–6076 (1989).

    Google Scholar 

  18. Gantt JS, Baldauf SL, Calie PJ, Weeden NF, Palmer JD: Transfer of rp 122 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. EMBO J 10: 3073–3078 (1991).

    PubMed  Google Scholar 

  19. Gibson JL, Chen C-H, Tower PA, Tabita FR: The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large operon in Rhodobacter sphaeroides: primary structure and insertional mutagenesis analysis. Biochemistry 29: 8085–8093 (1990).

    PubMed  Google Scholar 

  20. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR: Evolutionary relationships among cyanobacteria and green chloroplasts. J Bact 170: 3584–3592 (1988).

    PubMed  Google Scholar 

  21. Gotto JW, Tabita FR, VanBaalen C: Isolation and characterization of rapidly-growing, marine, nitrogen-fixing strains of blue-green algae. Arch Microbiol 121: 155–159 (1979).

    Google Scholar 

  22. Hwang S-R, Tabita FR: Cotranscription, deduced primary structure, and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. strain N1. J Biol Chem 266: 6271–6279 (1991).

    PubMed  Google Scholar 

  23. Jordan DB, Chollet R: Inhibition of ribulose bisphosphate carboxylase by substrate ribulose 1,5-bisphosphate. J Biol Chem 258: 13752–13758 (1983).

    PubMed  Google Scholar 

  24. Jordan DB, Chollet R, Ogren WL: Binding of phosphorylated effectors by active and inactive forms of ribulose-1,5-bisphosphate carboxylase. Biochemistry 22: 3410–3418 (1983).

    Google Scholar 

  25. Klintworth R, Huseman M, Salnikow J, Bowien B: Chromosomal and plasmid locations for phosphoribu-lokinase genes in Alcaligenes eutrophus. J Bact 2: 954–956 (1989).

    Google Scholar 

  26. Knauf VC, Nester EW: Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8: 45–54 (1982).

    PubMed  Google Scholar 

  27. Lan Y, Mott KA: Determination of apparent Km values for ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase using the spectrophotometric assay of Rubisco activity. Plant Physiol 95: 604–609 (1991).

    Google Scholar 

  28. Lee B, Read BA, Tabita FR: Catalytic properties of recombinant octameric, hexadecameric, and heterologous cyanobacterial/bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 291: 263–269 (1991).

    PubMed  Google Scholar 

  29. Lewin RA, Withers NW: Extraordinary pigment composition of a prokaryotic alga. Nature 256: 735–737 (1975).

    Google Scholar 

  30. Lieman-Hurwitz J, Schwarz R, Martinez F, Maor Z, Reinhold L, Kaplan A: Molecular analysis of high CO2 requiring mutants: involvement of genes in the region of rbc, including rbcS, in the ability of cyanobacteria to grow under low CO2. Can J Bot 69: 945–950 (1991).

    Google Scholar 

  31. Lorimer GH: Ribulose bisphosphate carboxylase: amino acid sequence of a peptide bearing the activator carbon dioxide. Biochemistry 20: 1236–1440 (1981).

    PubMed  Google Scholar 

  32. Lugtenberg B, Jeijers J, Peters R, van derHoak P, van Alpen L: Electrophoretic resolution of the ‘major outer membrane protein’ of E. coli into bands. FEBS Lett 58: 254–258 (1975).

    Article  PubMed  Google Scholar 

  33. Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).

    Google Scholar 

  34. Margulis L: Symbiosis in cell evolution. WH Freeman and Co., San Francisco (1981).

    Google Scholar 

  35. McCarn DF, Whitaker RA, Alam J, Vrba JM, Curtis SE: Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120. J Bact 170: 3448–3458 (1988).

    PubMed  Google Scholar 

  36. Meijer WG, Arnberg AC, Enequist HG, Terpstra P, Lidstrom ME, Dijkhuizen L: Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4–14. Mol Gen Genet 225: 320–330 (1991).

    Article  PubMed  Google Scholar 

  37. Nierzwicki-Bauer SA, Curtis SE, Haselkorn R: Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 81: 5961–5965 (1984).

    PubMed  Google Scholar 

  38. Portis ARJr, Salvucci ME, Ogren WL: Activation of ribulose bisphosphate carboxylase/oxygenase at physiological CO2 and ribulose bisphosphate concentrations of Rubisco activase. Plant Physiol 82: 967–971 (1986).

    Google Scholar 

  39. Pridmore RD: New and versatile cloning vectors with a kanamycin-resistance marker. Gene 56: 309–312 (1987).

    Article  PubMed  Google Scholar 

  40. Robinson SP, Portis ARJr.. Release of the nocturnal inhibitor, carboxyarabinitol-1-phosphate, from ribulose bisphosphate carboxylase/oxygenase by Rubisco activase. FEBS Lett 223: 413–416 (1988).

    Article  Google Scholar 

  41. Robinson SP, Portis ARJr.: Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 90: 968–971 (1989).

    Google Scholar 

  42. Robinson SP, Portis ARJr.: Adenosine triphosphate hydrolysis by purified Rubisco activase. Arch Biochem Biophys 268: 93–99 (1989).

    PubMed  Google Scholar 

  43. Roesler KR, Ogren WL: Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide. Plant Physiol 94: 1837–1841 (1990).

    Google Scholar 

  44. Rundle SJ, Zielinski RE: Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem 266: 4677–4685 (1991).

    PubMed  Google Scholar 

  45. Salvucci ME, Portis ARJr, Ogren WE: A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/oxygenase activation in vivo. Photosyn Res 7: 193–200 (1985).

    Google Scholar 

  46. Sanger F, Nicklen S, Coulsen AR: Sequencing by chain termination with dideoxynucleotides. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  47. Seewaldt E, Stackebrandt E: Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. Nature 295: 618–620 (1982).

    Google Scholar 

  48. Shen JB, Orozco EMJr, Ogren WL: Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem 266: 8963–8968 (1991).

    PubMed  Google Scholar 

  49. Shine J, Dalgarno L: The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71: 1342–1346 (1974).

    PubMed  Google Scholar 

  50. Shinozaki K, Sugiura M: Genes from the large and small subunits of ribulose 1,5-bisphosphate carboxylase/oxygenase constitute a single operon in a cyanobacterium Anacystis nidulans 6301. Mol Gen Genet 200: 27–32 (1985).

    Google Scholar 

  51. Somerville CR, Portis ARJr., Ogren WL: A mutant of Arabidopsis thaliana which lacks activation of RuBP carboxylase in vivo. Plant Physiol 70: 381–387 (1979).

    Google Scholar 

  52. Stacey G, VanBaalen C, Tabita FR: Isolation and characterization of a marine Anabaena sp. capable of rapid growth on molecular nitrogen. Arch Microbiol 114: 197–201 (1977).

    Google Scholar 

  53. Streusand VJ, Portis ARJr.: Rubisco activase mediated ATP-dependent activation of ribulose bisphosphate carboxylase. Plant Physiol 85: 152–154 (1987).

    Google Scholar 

  54. Su X, Bogorad L: A residue substitution in phosphoribulokinase of Synechocystis PCC 6803 renders the mutant light sensitive. J Biol Chem 266: 23698–23705 (1991).

    PubMed  Google Scholar 

  55. Tabita FR: Carbon dioxide fixation and its regulation in cyanobacteria. In: Fay P, VanBaalen C (eds) The Cyanobacteria, pp. 96–117. Elsevier, Amsterdam (1987).

    Google Scholar 

  56. Tabita FR: Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52: 155–189 (1988).

    PubMed  Google Scholar 

  57. Thorne SW, Newcomb EH, Osmond CB: Identification of chlorophyll b in extracts of prokaryotic algae by fluorescence spectroscopy. Proc Natl Acad Sci USA 74: 575–578 (1977).

    PubMed  Google Scholar 

  58. VanBaalen C: Studies on marine blue-green algae. Bot Mar 4: 129–139 (1962).

    Google Scholar 

  59. Wasmann CC, Loffelhardt W, Bohnert HJ: Cyanelles: organization and molecular biology. In: Fay P, Van Baalen C (eds) The Cyanobacteria, pp. 303–324. Elsevier, Amsterdam (1987).

    Google Scholar 

  60. Weaver KE, Tabita FR: Complementation of a Rhodopseudomonas sphaeroides ribulose bisphosphate carboxylase-oxygenase regulatory mutant from a genomic library. J Bact 164: 147–154 (1985).

    PubMed  Google Scholar 

  61. Werneke JM, Zielinski RE, Ogren WL: Structure and expression of spinach leaf cDNA encoding ribulosebi-sphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci USA 85: 787–791 (1988).

    PubMed  Google Scholar 

  62. Whitton BA: Interactions with other organisms. In: Carr NG, Whitton BA (eds) The Biology of the Blue-Green Algae, pp. 415–433. Blackwell Scientific, Oxford (1972).

    Google Scholar 

  63. Yanisch-Peron C, Vieira J, Messing J: Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp 18 and pUC19 vectors. Gene 33: 103–119 (1985).

    Article  PubMed  Google Scholar 

  64. Zielinski RE, Werneke JM, Jenkins ME: Coordinate expression of Rubisco activase and Rubisco during barley leaf cell development. Plant Physiol 90: 516–521 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, LA., Janet, L., Gibson et al. The Rubisco activase (rca) gene is located downstream from rbcS in Anabaena sp. strain CA and is detected in other Anabaena/Nostoc strains. Plant Mol Biol 21, 753–764 (1993). https://doi.org/10.1007/BF00027109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027109

Key words

Navigation