Skip to main content
Log in

Forms and distribution of inorganic phosphorus in sediments of two shallow eutrophic lakes in Florida

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Phosphorus (P) reactivity and bioavailability in lake sediments may be determined by different forms of P and their distribution. Reactive and nonreactive P pools in two shallow subtropical lake sediments (Lake Apopka and Lake Okeechobee) were determined by sequential chemical extraction using 1 M NH4Cl (pH 7.0), 0.1 M NaOH, and 0.5 M HCl, reportedly representing loosely-bound P, Fe- and Al-bound P, and Ca- and Mg-bound P respectively. The sequential P fractionation was tested using pure P compounds and selected P minerals. The scheme effectively separated Fe- and Al-P from Ca-P fractions in an FePO4-AlPO4-Ca3(PO4)2 mixture. Readily available P, defined as the sum of water-soluble P and NH4Cl-extractable P, in the unconsolidated gyttja (UCG) layer (surface 0–30 cm) of Lake Apopka sediments accounted for 10.1 to 23.7% of total P (TP). This sediment P fraction constitutes a large reservoir which may act as a source of P to the overlying water. In subsurface marl layers (134–148 cm depth) of Lake Apopka, NH4Cl-P constituted <I% of TP whereas Ca-Mg-bound P and highly resistant P (residual P) accounted for 35 and 64% of TP respectively. Results suggest that 1 M NH4Cl (pH 7.0) and 0.5 M HCl, reported to dissolve carbonate-bound P and Ca-Mg-bound P, respectively, may not be extracting distinct pools of P. Lake Okeechobee mud sediments had low concentrations of readily available P (2% of TP) and were dominated by Ca-Mg-bound P (HCl-P≥58% of TP). Sediments in the littoral and peat areas of Lake Okeechobee, however, had high concentrations of readily available P (9.7 and 17.4% of TP respectively); hence, these sediments may play an important role in internal P cycling. The NaOH-P (Fe-Al-P) concentrations for Lake Okeechobee sediments were strongly correlated with amorphous and poorly-crystalline Fe (p< 0.01), suggesting that some P reactions in these sediments may be sensitive to changes in physico-chemical conditions such as redox potential and sediment resuspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge, F. J., C. L. Schelske & H. J. Hunter, 1993. Nutrient limitation in a hypereutrophic Florida Lake. Arch. Hydrobiol. 127: 21–37.

    Google Scholar 

  • American Public health Association (APHA). 1992. Standard Methods for the Examination of Water and Wastewater, 18th edn. American Public Health Association, Washington D.C.

    Google Scholar 

  • Barko J. W. & R. M. Smart, 1980. Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwat. Biol. 10: 229–238.

    Google Scholar 

  • Brezonik, P. L., E. C. Blancher, V. B. Myers, C. L. Hilty, M. K. Leslie, C. R. Kratzer, G. D. Marbury, B. R. Snyder, T. L. Crisman & J. J. Messer, 1979. Factors Affecting Primary Production in Lake Okeechobee, Florida. Report to the Florida Sugarcane League. Report No. 07–79–01. Dept Envir. Eng. Sci., Univ. of Florida, Gainesville.

    Google Scholar 

  • Brezonik, P. L. & J. L. Fox, 1976. Analysis of Eutrophication and Water Quality Factors in the Middle St. Johns River Basin. Report to the Florida Dept. of Environmental Regulation, Tallahassee, FL.

  • Burrus, D., R. L. Thomas, J. Dominik & J. P. Vernet, 1990. Seasonal delivery of the particulate forms of phosphorus to Lake Geneva from the upper Rhone River. Aquat. Sci. 52: 221–254.

    Google Scholar 

  • Canfield, D. E. & M. V. Hoyer, 1988. The eutrophication of Lake Okeechobee. Lake and reservoir management. 4: 91–99.

    Google Scholar 

  • Chang, S. C. & M. L. Jackson, 1957. Fractionation of soil phosphorus. J. Soil Sci. 84: 133–144.

    Google Scholar 

  • Fisher, M. M., M. Brenner & K. R. Reddy, 1992. A simple, inexpensive piston corer for collecting undisturbed sediment-water interface profile. J. Paleolimnol. 7: 157–161.

    Article  Google Scholar 

  • Folsom, B. L. Jr., H. D. Sunderman & L. R. Hossner, 1977. Correcting turbidity interferences in the determination of phosphorus. Soil Sci. Soc. Am. J. 41: 823–824.

    Google Scholar 

  • Forsberg, C. & S. R. Ryding, 1980. Eutrophication parameters and trophic state indices in 30 Swedish waste receiving lakes. Arch. Hydrobiol. 89: 189–207.

    Google Scholar 

  • Frink, C. R., 1969. Fractionation of phosphorus in lake sediments: Analytical evaluation. Soil Sci. Soc. Am. Proc. 33: 326–328.

    Google Scholar 

  • Furumai, H. & S. Ohgaki, 1982. Fractional composition of phosphorus forms in sediments related to release. Wat. Sci. Tech. 14: 215–226.

    Google Scholar 

  • Golterman, H. L., C. C. Bakels & Jakobs-Mogelin, 1969. Availability of mud phosphates for the growth of algae. Verh. int. Ver. Limnol. 17: 467–479.

    Google Scholar 

  • Gunatilaka, A., 1988. Estimation of the available P-pool in a large freshwater marsh. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 15–24.

    Google Scholar 

  • Gunatilaka, A., S. Herodek, V. Istvanovics & E. Dobolvi, 1988. Biological availability of sediment phosphorus. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 93–98.

    Google Scholar 

  • Hieltjes, A. H. M. & L. Lijlema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. envir. Qual. 9: 405–407.

    Google Scholar 

  • Hosomi, M., M. Okada & R. Sudo, 1981. Release of phosphorus from sediments. Verb. int. Ver. Limnol. 21: 628–633.

    Google Scholar 

  • Huffman, E. W. D., Jr., 1977. Performance of a new automatic carbon dioxide analyzer. Microchem. J. 22: 567–573.

    Google Scholar 

  • Klapwijk, S. P., J. M. W. Kroon & M. L. Meijer, 1982. Available phosphorus in lake sediments in The Netherlands. Hydrobiologia 92: 491–500.

    Article  Google Scholar 

  • Levesque, M. & M. Schnitzer, 1966. Effects of NaOH concentration on the extraction of organic matter and of major inorganic constituents from a soil. Can. J. Soil Sci. 46: 7–12.

    Google Scholar 

  • McKeague J. A. & J. H. Day, 1966. Dithionite- and oxalateextractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46: 13–22.

    Google Scholar 

  • McRoy, C. P., R. J. Barsdate & J. Nebert, 1972. Phosphorus cycling in eelgrass (Zostera marina L.) ecosystem. Limnol. Oceanogr. 17: 58–67.

    Google Scholar 

  • Mehra, O. P. & M. L. Jackson, 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals 7: 317–327.

    Google Scholar 

  • Moshi, A. O., A. Wild & J. D. Greenland, 1974. Effect of inorganic matter on the charge and phosphate adsorption characteristics of Kikiyu red clay from Kenya. Geoderma 11: 275–285.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. Chim. Acta. 27: 31–36.

    Article  Google Scholar 

  • Ostrofsly, M. L., 1987. Phosphorus species in the surficial sediments of Lakes of Eastern North America. Can. J. Fish. aquat. Sci. 44: 960–966.

    Google Scholar 

  • Petersen, G. W. & R. B. Corey, 1966. A modified Chang and Jackson procedure for routine fractionation of inorganic phosphates. Soil Sci. Soc. Am. Proc. 30: 563–565.

    Google Scholar 

  • Pettersson, K., 1986. The fractional composition of phosphorus in lake sediments of different characteristics. In P. G. Sly (ed.), Sediment and Water Interactions. Springer-Verlag: 149–155.

  • Pettersson, K. & V. Istvanovics, 1988. Sediment phosphorus in Lake Balaton — forms and mobility. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 25–41.

    Google Scholar 

  • Psenner, R., B. Bostrom, M. Dinka, K. Pettersson, R. Pucsko & M. Sager, 1988. Fractionation of phosphorus in suspended matter and sediment. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 98–103.

    Google Scholar 

  • Reddy, K. R., M. Brenner, M. M. Fisher & D. B. Ivanoff, 1991. Lake Okeechobee Phosphorus Dynamics Study: Biogeochemical Processes in the Sediments. Vol. III. Final Report to the South Florida Water Management District. West Palm Beach, FL. Contract No. 531-m88-0445-A4. Soil Science Department, Institute of Food and Agric. Science, University of Florida, Gainesville.

  • Reddy, K. R. & D. A. Graetz, 1991. Internal nutrient budget for Lake Apopka. Special Publ. SJ91-SP6. St. Johns River Water Mgt District. Palatka, Florida.

    Google Scholar 

  • SAS Institute Inc., 1985. SAS User's Guide: Statistics, Version 5 Edition, Cary NC: SAS Institute Inc., 1985.

    Google Scholar 

  • Saunders, W. M. H. & E. G. Williams, 1955. Observations on the determination of total organic phosphorus in soil. J. Soil Sci. 6: 254–267.

    Google Scholar 

  • Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. envir. Qual. 11: 555–563.

    Google Scholar 

  • Syers, J. K., R. F. Harris & D. E. Armstrong, 1973. Phosphate chemistry in lake sediments. J. envir. Qual. 2: 1–14.

    Google Scholar 

  • Syers, J. K., J. D. H. Williams & T. W. Walker, 1968. The determination of total phosphorus in soils and parent materials. N. Z. J. Agric. Res. 11: 757–762.

    Google Scholar 

  • Tiren, T. & K. Pettersson, 1985. The influence of nitrate on the phosphorus flux to and from oxygen depleted lake sediments. Hydrobiologia 120: 207–223.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA). 1983. Methods for Chemical Analysis of Water and Wastes. EPA-600/4–79–020. Environmental Monitoring and Support Laboratory, Office of Research and Development, USEPA. Cincinnati, OH.

    Google Scholar 

  • van Eck, G. T. M., 1982. Forms of phosphorus in particulate matter from the Hollands Diep/Haringvliet, The Netherlands. Hydrobiologia 91: 655–681.

    Article  Google Scholar 

  • Wang, H., 1990. Mineralogical and chemical characteristics of phosphates in some Florida phosphatic soils. Ph. D. Dissertation. University of Florida.

  • Wetzel, R. G., 1975. Limnology. W. B. Saunders, Co., Philadelphia, 743 pp.

    Google Scholar 

  • Watanabe, F. S. & R. S. Olsen, 1961. Colorimetric determination of phosphorus in water extracts of soil. Soil Sci. 93: 183–188.

    Google Scholar 

  • Wildung, R. E., R. L. Schmidt & R. C. Rouston, 1977. The phosphorus status of eutrophic lake sediments as related to changes in limnological conditions — phosphorus mineral components. J. envir. Qual. 6: 100–104.

    Google Scholar 

  • Williams, J. D. H., J. K. Syers, S. S. Shukla, R. F. Harris & D. E. Armstrong, 1971. Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Envir. Sci. Technol. 5: 1113–1120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Florida Agricultural Experiment Station Journal Series No. R-03406. This work was supported in part by South Florida Water Management District and St. Johns River Water Management District.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olila, O.G., Reddy, K.R. & Harris, W.G. Forms and distribution of inorganic phosphorus in sediments of two shallow eutrophic lakes in Florida. Hydrobiologia 302, 147–161 (1995). https://doi.org/10.1007/BF00027039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00027039

Key words

Navigation