, Volume 197, Issue 1, pp 115–128 | Cite as

Production and decomposition processes in a saline meromictic lake

  • K. J. Hall
  • T. G. Northcote


Bacterial and phytoplankton cell number and productivity were measured in the mixolimnion and chemocline of saline meromictic Mahoney Lake during the spring (Apr.–May) and fall (Oct.) between 1982 and 1987. High levels of bacterial productivity (methyl 3H-thymidine incorporation), cell numbers, and heterotrophic assimilation of 14C-glucose and 14C-acetate in the mixolimnion shifted from near surface (1.5 m), at a secondary chemocline, to deeper water (4–7 m) as this zone of microstratification gradually weakened during a several year drying trend in the watershed. In the mixolimnion, bacterial carbon (13–261 µgC 1−1) was often similar to phytoplankton carbon (44–300 µgC 1−1) and represented between 14–57% of the total microbial (phytoplankton + bacteria) carbon depending on the depth interval. Phototrophic purple sulphur bacteria were stratified at the permanent primary chemocline (7.5–8.3 m) in a dense layer (POC 250 mg 1−1, bacteriochlorophyll a 1500–70001µ 1−1), where H2S changed from 0.1 to 2.5 mM over a 0.2 m depth interval. This phototrophic bacterial layer contributed between 17–66% of the total primary production (115–476 mgC m−2 d−1) in the vertical water column. Microorganisms in the phototrophic bacterial layer showed a higher uptake rate for acetate (0.5–3.7 µC 1−1 h−1) than for glucose (0.3–1.4 µgC 1−1 h−1) and this heterotrophic activity as well as bacterial productivity were 1 to 2 orders of magnitude higher in the dense plate than in the mixolimnetic waters above. Primary phytoplanktonic production in the mixolimnion was limited by phosphorus while light penetration appeared to regulate phototrophic productivity of the purple sulphur bacteria.

Key words

primary production heterotrophic activity bacterial productivity purple phototrophic sulphur bacteria meromixis saline lake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Public Health Association, American Water Works Association & Water Pollution Control Federation, 1985. Standard methods for the examination of water and wastewater, 16th ed. APHA, Wash. D.C. 1268 pp.Google Scholar
  2. Anderson, G. C., 1958. Some limnological features of a shallow saline meromictic lake. Limnol. Oceanogr. 3: 259–270.Google Scholar
  3. Braunegg, G., B. Sonnleitner & R. M. Lafferty, 1978. A rapid gas chromatographic method for the determination of poly-hydroxybutyric acid in microbial biomass. Biotechnol. 6: 29–37.Google Scholar
  4. Cloern, J. E., B. E. Cole & R. S. Oremland, 1983. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnol. Oceanogr. 28: 1049–1061.Google Scholar
  5. Cloern, J. E., B. E. Cole & S. M. Wienke, 1987. Big Soda Lake (Nevada). 4. Vertical fluxes of particulate matter: Seasonality and variations across the chemocline. Limnol. Oceanogr. 32: 815–824.Google Scholar
  6. Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar lake (Sinai) 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.Google Scholar
  7. Comeau, Y., W. K. Oldham & K. J. Hall, 1987. Dynamics of carbon reserves in biological dephosphatation of wastewater. Adv. in Water Pollut. Control. 39#x2013;55 IAWPRC Int. Conf. in Rome, Sept. 1987.Google Scholar
  8. Croome, R. L. & P. A. Tyler, 1984. Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh. int. Ver. Limnol. 22: 1216–1223.Google Scholar
  9. Culver, D. A. & G. J. Brunskill, 1969. Fayetteville Green Lake v. Studies of primary production and zooplankton in a meromictic marl lake. Limnol. Oceanogr. 14: 862–873.Google Scholar
  10. Dawes, E. A. & P. J. Senior, 1973. The role and regulation of energy reserve polymers in microorganisms. Adv. Microbial Physiol. 10: 135–266.Google Scholar
  11. Fuhram, J. A. & F. Azam, 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation of field results. Mar. Biol. 66: 109–120.Google Scholar
  12. Fuhram, J. A., H. W. Ducklow, D. L. Kirchman, J. Hudak, G. B. McManus & J. Kramer, 1986. Does adenine incorporation into nucleic acids measure total microbial production? Limnol. Oceanogr. 31: 627–636.Google Scholar
  13. Griffiths, R. P., S. S. Hayasaka, T. M. McNamara & R. Y. Morita, 1977. Comparison between two methods of assaying relative microbial activity in marine environments. Appl. envir. Microbiol. 34: 801–805.Google Scholar
  14. Guerrero, R., E. Montesinos, C. Pedros-Alio, I. Esteves, J. Mas, H. van Gemerden, P. A. G. Hofman & J. F. Bakker, 1985. Phototrophic sulfur bacteria in two Spanish lakes: Vertical distribution and limiting factors. Limnol. Oceanogr. 30: 919–931.Google Scholar
  15. Hammer, U. T., R. C. Haynes, J. M. Heseltine & S. M. Swanson, 1975. The saline lakes of Saskatchewan. Verh. int. Ver. Limnol. 19: 589–598.Google Scholar
  16. Hayden, J. F., 1972. A limnological investigation of a meromictic lake (Medicine Lake, South Dakota), M. Sc., Univ. of South Dakota, Vermillion.Google Scholar
  17. Hobbie, J. E., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria by fluorescence microscopy. Appl. envir. Microbiol. 33: 1225–1228.Google Scholar
  18. Hudec, P. P. & P. Sonnenfeld,1980. Comparison of Caribbean solar ponds with inland solar lakes of British Columbia. in A. Nissenbaum (ed.) Hypersaline brines and evaporitic environments. Elsevier, Amsterdam, 101–114.Google Scholar
  19. Lawrence, J. R., R. C. Haynes & U. T. Hammer, 1978. Contribution of photosynthetic green sulphur bacteria to total primary production in a meromictic saline lake. Verh. int. Ver. Limnol. 20: 201–207.Google Scholar
  20. Lovell, C. R. & A. Konopka, 1985. Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation. Appl. envir. Microbiol. 49: 492–500.Google Scholar
  21. Murphy, T. P., K. J. Hall & I. Yesaki, 1983. Coprecipitation of phosphorus with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 58–69.Google Scholar
  22. Northcote, T. G. & T. G. Halsey, 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish Res. Bd, Can. 26: 1763–1787.Google Scholar
  23. Northcote, T. G. & K. J. Hall, 1983. Limnological contrasts and anomalies in two adjacent saline lakes. Hydrobiologia 105: 179–194.Google Scholar
  24. Northcote, T. G. & K. J. Hall,MS. Vernal microstratification patterns in a meromictic saline lake: their causes and biological significance. HydrobiologiaGoogle Scholar
  25. Parkin, T. B. & T. D. Brock, 1980. Photosynthetic bacterial production in lakes: The effect of light intensity. Limnol. Oceanogr. 25: 711–718.Google Scholar
  26. Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identification and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.Google Scholar
  27. Priscu, J. C., R. P. Axler, R. G. Carlton, J. E. Reuter, P. A. Arneson & C. R. Goldman, 1982. Vertical profiles of primary productivity biomass and physiochemical properties in meromictic Big Soda Lake, Nevada, USA. Hydrobiologia 96: 113–120.Google Scholar
  28. Riemann, B., J. A. Fuhram & F. Azam, 1982. Bacterial secondary production in freshwater measured by 3H-thymidine incorporation method. Microb. Ecol. 8: 101–114.Google Scholar
  29. Scavia, D. & G. A. Laird, 1987. Bacterioplankton in Lake Michigan: Dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033.Google Scholar
  30. Strickland, J. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd, Can. 167.Google Scholar
  31. Takahashi, M. & S. Ichimura, 1968. Vertical distribution and organic matter production of photosynthetic sulfur bacteria in Japanese Lakes. Limnol. Oceanogr. 13: 644–655.Google Scholar
  32. Takahashi, M. & S. Ichimura, 1970. Photosynthetic properties and growth of photosynthetic sulphur bacteria in lakes. Limnol. Oceanogr. 15: 929–944.Google Scholar
  33. van Gemerden, H. & H. H. Beeftink, 1983. Ecology of phototrophic bacteria. in J. G. Ormerod (ed.). The phototrophic bacteria, Studies in Microbiol., 4: 146–179, Univ. of Cal. Press, Berkley.Google Scholar
  34. van Gemerden, H., E. Montesinos, J. Mas & R. Guerrero, 1985. Diel cycle of metabolism of phototrophic purple sulfur bacteria in Lake Cisó (Spain). Limnol. Oceanogr. 30: 932–943.Google Scholar
  35. Veldhius, M. J. W. & H. van Gemerden, 1986. Competition between purple and brown bacteria in a stratified lake: Sulfide, acetate, and light as limiting factors. FEMS Microbial Ecol. 38: 31–38.Google Scholar
  36. Wetzel, R. G., 1973. Productivity investigations of interconnected lakes I. The eight lakes of the Oliver and Walters chains, northeastern Indiana. Hydrobiol. Stud. 3: 91–143.Google Scholar
  37. Wetzel, R. G.,1975.Limnology, W. B. Saunders Co. Toronto. 743 pp.Google Scholar
  38. Wetzel, R. G. & G. E. Likens, 1979. Limnological analyses. W. B. Saunders Co. Philadelphia. 357 pp.Google Scholar
  39. Wood, L. W., 1985. Chloroform-methanol extraction of chlorophyll a. Can. J. Fish. aquat. Sci. 42: 38–43.Google Scholar
  40. Zehr, J. P., R. W. Harvey, R. S. Oremland, J. E. Cloern, L. H. George & J. L. Lane, 1987. Big Soda Lake (Nevada). I. Pelagic bacterial heterotrophy and biomass. Limnol. Oceanogr. 32: 781–793.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • K. J. Hall
    • 1
  • T. G. Northcote
    • 2
  1. 1.Westwater Research CentreThe University of British ColumbiaVancouverCanada
  2. 2.Department of ZoologyThe University of British ColumbiaVancouverCanada

Personalised recommendations