Hydrobiologia

, Volume 197, Issue 1, pp 105–114 | Cite as

Vernal microstratification patterns in a meromictic saline lake: their causes and biological significance

  • T. G. Northcote
  • K. J. Hall
Article

Abstract

Periodic high spring runoff, in addition to lake surface snow and ice melt, is shown to be a major cause of sharp secondary chemocline formation in a small (20 ha) lake arid and south-central British Columbia. Initially detected in 1982 at about 1 m and enhanced by high inflow of low salinity meltwater in spring 1983, the secondary chemocline gradually deepened and broke down over four subsequent years. Associated microstratification layers (major changes within a few cm of depth), exhibited very high temperatures (> 30 °C), and very high dissolved oxygen (> 200% saturation) as well as very low (close to 0% saturation) levels. Oxygen supersaturation resulted from photosynthetic production at the microstratification boundaries. In the springs of 1982 and 1983, formation of an anoxic layer between regions of high oxygen concentration, separated the phytoplankton and zooplankton communities into two layers above the primary chemocline. The several year persistence of the secondary chemoclines and associated interface processes (concentration of particulate organic matter, bacterial decomposition, nutrient regeneration, phytoplanktonic production) attest to their functional importance in this meromictic lake.

Key words

saline lakes meromixis microstratification climatic regulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association, American Water Work Association & Water Pollution Control Federation, 1985. Standard methods for the examination of water and wastewater, 16th ed. APHA, AWWA, WPCF, Wash. D. C., 1268 pp.Google Scholar
  2. Anderson, G. C., 1958. Some limnological features of a shallow saline meromictic lake. Limnol. Oceanogr. 3: 259–270.Google Scholar
  3. Birge, E. A. & C. Juday, 1911. The inland lakes of Wisconsin. The dissolved gases of the water and their biological significance. Bull. Wis. Geol. Nat. Hist. Survey 22, Sci. Ser. 7, 259 pp.Google Scholar
  4. Cloern, J. E., B. E. Cole & S. M. Wienke, 1987. Big Soda Lake (Nevada). 4. Vertical fluxes of particulate matter: seasonality and variations across the chemocline. Limnol. Oceanogr. 32: 815–824.Google Scholar
  5. Elgmork, K. & A. Langeland, 1980. Cyclops scutifer Sars — one and two-year life cycles with diapause in the meromictic lake. Blankvatn. Arch. Hydrobiol. 88: 178–201.Google Scholar
  6. EPA, 1980. An approach to water resources evaluation of non-point silvicultural sources (a procedural handbook). U.S. Envir. Prot. Agency, Envir. Res. Lab., Off. Res. Dev., Athens, Georgia, EPA-600/8-80-012, Chap. 3, 173 pp.Google Scholar
  7. Hall, K. J. & T. G. Northcote, 1986. Conductivity-temperature standardization and dissolved solids estimation in a meromictic saline lake. Can. J. Fish. aquat. Sci. 43: 2450–2454.Google Scholar
  8. Hall, K. J. & T. G. Northcote, 1990. Production and decomposition processes in a saline meromictic lake. Hydrobiologia 197: 115–128.Google Scholar
  9. Hammer, U. T., 1986. Saline lake ecosystems of the world. Kluwer Academic Publishers Group, Dordrecht, The Netherlands, 614 pp.Google Scholar
  10. Hammer, U. T., R. C. Haynes, J. R. Lawrence & M. C. Swift, 1978. Meromixis in Waldsea Lake, Saskatchewan. Verh. int. Ver. Limnol. 20: 192–200.Google Scholar
  11. Hudec, P. P. & P. Sonnenfeld, 1980. Comparison of Caribbean solar ponds with inland solar lakes of British Columbia. In: Brines and Evaporitic Environments. A. Nissenbaum [ed.] Elsevier, Amsterdam. pp. 101–114.Google Scholar
  12. Kimmel, B. L., R. M. Gersberg, L. P. Paulson, R. P. Axler & C. R. Goldman, 1978. Recent changes in the meromictic status of Big Soda Lake, Nevada. Limnol. Oceanogr. 23: 1021–1025.Google Scholar
  13. Michel, B., 1971. Winter regime of rivers and lakes. Cold Regions Science and Engineering Monograph 111-Bla, 131 pp.Google Scholar
  14. Mortimer, C. H., 1981. The oxygen content of air-saturated fresh waters over ranges of temperature and atmospheric pressure of limnological interest. Mitt. int. Ver. Limnol. 22, 23 pp.Google Scholar
  15. Northcote, T. G. & K. J. Hall, 1983. Limnological contrasts and anomalies in two adjacent saline lakes. Hydrobiologia 105: 179–194.Google Scholar
  16. Northcote, T. G. & T. G. Halsey, 1969. Seasonal changes in the limnology of some meromictic lakes in southern British Columbia. J. Fish Res. Bd. Can. 26: 1763–1787.Google Scholar
  17. Shulyakovskii, L. G. [ed.], 1966. Manual of forecasting ice-formation for rivers and inland lakes. Manual of Hydrological Forecasting No. 4, 245 pp.Google Scholar
  18. Swift, M. C. & U. T. Hammer, 1979. Zooplankton population dynamics and Diaptomus production in Waldsea Lake, a saline meromictic lake in Saskatchewan. J. Fish. Res. Bd. Can. 36: 1431–1438.Google Scholar
  19. Walker, K. F., 1974. The stability of meromictic lakes in central Washington. Limnol. Oceanogr. 19: 209–222.Google Scholar
  20. Wetzel, R. G., 1983.Limnology. Saunders College Publishing, Philadelphia, USA, 859 pp.Google Scholar
  21. Williams, G. P., 1963. Probability charts for predicting ice thickness. Engineering Journal, E.I.C. 46: 31–35.Google Scholar
  22. Zehr, J. P., R. W. Harvey, R. S. Oremland, J. E. Cloern & L. H. George, 1987. Big Soda Lake (Nevada) 1. Pelagic bacterial heterotrophy and biomass. Limnol. Oceanogr. 32: 781–793.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • T. G. Northcote
    • 1
  • K. J. Hall
    • 2
  1. 1.Department of ZoologyThe University of British ColumbiaVancouverCanada
  2. 2.Westwater Research CentreThe University of British ColumbiaCanada

Personalised recommendations