, Volume 195, Issue 1, pp 163–177

Phytoplankton primary production and nutrients in the Oosterschelde (The Netherlands) during the pre-barrier period 1980–1984

  • L. P. M. J. Wetsteyn
  • J. C. H. Peeters
  • R. N. M. Duin
  • F. Vegter
  • P. R. M. de Visscher
Case studies and estuary characteristics


Phytoplankton primary production, nutrient concentrations and turbidity were monitored at three stations in the Oosterschelde during 1980–1984 as part of an ecosystem study.

From comparisons of dissolved nutrient ratios with the nutrient requirements of phytoplankton, and of ambient nutrient concentrations with half-saturation constants for nutrient uptake by natural phytoplankton populations it was concluded that silicate was a limiting nutrient for diatoms after the spring bloom until the end of the summer. Dissolved inorganic nitrogen and phosphate were not considered to be limiting to phytoplankton growth.

In general, the phytoplankton growing season started during the first fortnight of April and ended at the end of September. Column production in the whole Oosterschelde varied between 201 and 540 g C m−2 yr−1 and was, on average, 25% higher in the western part than in the eastern part. ‘Basin’ production in the Oosterschelde varied between 120 and 466 g C m−2 yr−1 and was, on average, 55% higher in the western part than in the eastern part; this difference could be explained by differences in the ratio of euphotic depth to mean depth of the compartments.

Estimated carbon-specific growth rates in the eastern part varied between < 0.1 and 3 d−1 and in the western part between < 0.1 and 1 d−1. This difference could be explained by the great differences in depth of the compartments. Carbon-specific growth rates are discussed in relation to phytoplankton loss rates. It is suggested that in the eastern part sedimentation must be an important sink for phytoplankton.

Key words

Oosterschelde phytoplankton primary production carbon-specific growth rate nutrients attenuation coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakker, C., M. Vink, P. de Visscher & F. Vegter, 1986. Phytoplankton structure, -biomass, -productivity and -turnover rate. In E. K. Duursma & E. S. Nieuwenhuize (chief eds.). Delta Institute for Hydrobiological Research, Yerseke. Progress report 1986: 16–18.Google Scholar
  2. Bätje, M. & H. Michaelis, 1986. Phaeocystis pouchetti blooms in the East Frisian coastal waters (German Bight, North Sea). Mar. Biol. 93: 21–27.Google Scholar
  3. Bienfang, P. K., 1975. Steady state analysis of nitrateammonium assimilation by phytoplankton. Limnol. Oceanogr. 20: 402–411.Google Scholar
  4. Birnbaum, E. L., 1978. Estimating in situ algal production with the help of light measurements and experimentally measured production rates. Hydrobiol. Bull. 12: 126–133.Google Scholar
  5. Boynton, W. R., W. M. Kemps & C. W. Keefe, 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production. In V.S. Kennedy (ed.). Estuarine comparisons. Academic Press, New York: 69–90.Google Scholar
  6. Cadée, G. C., 1986. Increased phytoplankton primary production in the Marsdiep area (Western Dutch Wadden Sea). Neth. J. Sea Res. 20: 285–290.Google Scholar
  7. Caperon, J. & D. A. Ziemann, 1976. Synergistic effects of nitrate and ammonium ion on the growth and uptake kinetics of Monochrysis lutheri in continuous culture. Mar. Biol. 36: 73–84.Google Scholar
  8. Colijn, F., 1983. Primary production in the Ems-Dollard estuary. Thesis, University of Groningen.Google Scholar
  9. De Jonge, V. N., 1990. Response of the Dutch Wadden Sea ecosystem to phosphorus discharges from the River Rhine. Hydrobiologia 195: 49–62.Google Scholar
  10. Dronkers, J. & J. T. F. Zimmerman, 1982. Some principles of mixing in tidal lagoons with examples of tidal basins in the Oosterschelde. In P. Lasserre & H. Postma (eds.). Coastal Lagoons. Proc. Int. Symp. Coastal Lagoons, Gauthier-Villars: 460–474.Google Scholar
  11. Duin, R. N. M. & J. P. G. van de Kamer,1988. De berekening van de fytoplanktonproduktie van een watersysteem en de schatting van de verliesprocessen van het fytoplankton. Nota GWAO-88.1006 (in Dutch).Google Scholar
  12. Eilers, P. H. C. & J. C. H. Peeters, 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Modell. 42: 199–215.Google Scholar
  13. Fee, E. J., 1973. A numerical model for determining integral primary production and its application to Lake Michigan. J. Fish. Res. Bd Can. 30: 1447–1468.Google Scholar
  14. Fisher, T. R., L. W. Harding, D. W. Stanley & L. G. Ward, 1988. Phytoplankton, nutrients and turbidity in the Cheasapeake, Delaware, and Hudson estuaries. Est. Coast. Shelf Sci. 27: 61–93.Google Scholar
  15. Flint, R. W., 1984. Phytoplankton production in the Corpus Christi Bay estuary. Contributions in Marine Science 27: 65–83.Google Scholar
  16. Gieskes, W. W. C. & G. W. Kraay, 1975. The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Neth. J. Sea Res. 9: 166–196.Google Scholar
  17. Gillbricht, M., 1988. Phytoplankton and nutrients in the Helgoland region. Helgoländer Meeresunters. 42: 435–467.Google Scholar
  18. Harris, G. P., 1984. Phytoplankton productivity and growth measurements: past, present and future. J. Plankton Res. 6: 219–237.Google Scholar
  19. Hitchcock, G. L. & T. J. Smayda, 1977. The importance of light in the initiation of the 1972–1973 winter-spring diatom bloom in Narragansett Bay. Limnol. Oceanogr. 22: 126–131.Google Scholar
  20. Iturriaga, R. & A. Zsolnay, 1983. Heterotrophic uptake and transformation of phytoplankton extracellular products. Bot. Mar. 26: 375–381.Google Scholar
  21. Klepper, O. & H. Scholten, 1988. A model of carbon flows in relation to macrobenthic food supply in the Oosterschelde estuary (S. W. Netherlands). Report BALANS 1987-42.Google Scholar
  22. Klepper, O., J. C. H. Peeters, J. P. G. van de Kamer & P. Eilers, 1988. The calculation of primary production in an estuary. A model that incorporates the dynamic response of algae, vertical mixing and basin morphology. In A. Marani (ed.). Advances in environmental modelling. Elsevier, Amsterdam: 373–394.Google Scholar
  23. Knoester, M., J. Visser, B. A. Bannink, C. J. Colijn & W. P. A. Broeders, 1984. The Eastern Scheldt Project. Wat. Sci. Tech. 16: 51–77.Google Scholar
  24. Laanbroek, H. J. & J. C. Verplanke, 1984. Mineralisatie van organische koolstofverbindingen in de waterkolom van de Oosterschelde. Nota BALANS 1984-8 (in Dutch).Google Scholar
  25. Lancelot, C., 1983. Factors affecting phytoplankton extracellular release in the Southern Bight of the North Sea. Mar. Ecol. Progr. Ser. 12: 115–121.Google Scholar
  26. Lean, D. R. S. & B. K. Burnison, 1979. An evaluation of errors in the 14C method of primary production measurement. Limnol. Oceanogr. 24: 917–928.Google Scholar
  27. McCarthy, J. J., 1981. The kinetics of nutrient utilization. In T. Platt (ed.). Physiological bases of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. 210: 211–233.Google Scholar
  28. Peeters, J. C. H. & P. Eilers, 1978. The relationship between light intensity and photosynthesis. A simple mathematical model. Hydrobiol. Bull. 12: 134–136.Google Scholar
  29. Pennock, J. R. & J. H. Sharp, 1986. Phytoplankton production in the Delaware estuary: temporal and spatial variability. Mar. Ecol. Progr. Ser. 34: 143–155.Google Scholar
  30. Quéguiner, B. & P. Tréguer, 1986. Freshwater outflow effects in a coastal, macrotidal ecosystem as revealed by hydrological, chemical and biological variabilities (Bay of Brest, Western Europe). In S. Skreslet (ed.). The role of freshwater outflow in coastal marine ecosystems. NATO ASI Series, Springer-Verlag, Berlin: 219–230.Google Scholar
  31. Rijkswaterstaat, 1986. Te verwachten ontwikkelingen in het Oosterscheldebekken na 1987. Nota GWAO-86.106 (in Dutch).Google Scholar
  32. Riley, G. A., 1957. Phytoplankton of the North Central Sargasso Sea, 1950–1952. Limnol. Oceanogr. 2: 252–270.Google Scholar
  33. Schindler, D. W., R. V. Schmidt & R. A. Reid, 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J. Fish. Res. Bd Can. 29: 1627–1631.Google Scholar
  34. Scholten, H., O. Klepper, P. H. Nienhuis & M. Knoester, 1989. Oosterschelde estuary (S. W. Netherlands): a self-sustaining ecosystem? This volume.Google Scholar
  35. Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33(4, part 2): 702–724.Google Scholar
  36. Smaal, A. C. & M. R. van Stralen, 1990. Average annual growth and condition of mussels as a function of food source. Hydrobiologia 195: 179–188.Google Scholar
  37. Smayda, T. J., 1978. From phytoplankters to biomass. In A. Sournia (ed.). Phytoplankton Manual. Unesco, Paris: 273–279.Google Scholar
  38. Steemann Nielsen, E., 1952. The use of radio-active carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140.Google Scholar
  39. Strickland, J. D. H. & T. R. Parsons, 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Bd Can. 167: 1–310.Google Scholar
  40. Theodórsson, P. & J. O. Bjarnason, 1975. The acid-bubbling method for primary productivity measurements modified and tested. Limnol. Oceanogr. 20: 1018–1019.Google Scholar
  41. Tilzer, M. M. 1984. Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res. 6: 309–324.Google Scholar
  42. UNESCO, 1962. Technical papers in marine science, No. 1.Google Scholar
  43. Vegter, F. & P. R. M. de Visscher, 1984a. Phytoplankton primary production in brackish Lake Grevelingen (SW Netherlands) during 1976–1981. Neth. J. Sea Res. 18: 246–259.Google Scholar
  44. Vegter, F. & P. R. M. de Visscher, 1984b. Extracellular release by phytoplankton during photosynthesis in Lake Grevelingen (SW Netherlands). Neth. J. Sea Res. 18: 260–272.Google Scholar
  45. Vegter, F. & P. R. M. de Visscher, 1987. Nutrients and phytoplankton primary production in the marine tidal Oosterschelde estuary (The Netherlands). Hydrobiol. Bull. 21: 149–158.Google Scholar
  46. Veldhuis, M. J. W., 1987. The eco-physiology of the colonial alga Phaeocystis pouchetii. Thesis, University of Groningen.Google Scholar
  47. Wafar, M. V. M., P. Le Corre & J. L. Birrien, 1983. Nutrients and primary production in permanently well-mixed temperate coastal waters. Est. Coast. Shelf Sci. 17: 431–446.Google Scholar
  48. Weisse, T., N. Grimm, W. Hickel & P. Martens, 1986. Dynamics of Phaeocystis pouchetii blooms in the Wadden Sea of Sylt (German Bight, North Sea). Est. Coast. Shelf Sci. 23: 171–182.Google Scholar
  49. Welschmeyer, N. A. & C. J. Lorenzen, 1985. Chlorophyll budgets: Zooplankton grazing and phytoplankton growth in a temperate fjord and the Central Pacific Gyres. Limnol. Oceanogr. 30: 1–21.Google Scholar
  50. Wessels, C. & E. L. Birnbaum, 1979. An improved apparatus for use with the 14C acid-bubbling method of measuring primary production. Limnol. Oceanogr. 24: 187–188.Google Scholar
  51. Wetsteyn, L. P. M. J., J. C. H. Peeters, R. N. M. Duin, F. Vegter & P. R. M. de Visscher, 1988. Primaire produktie van het fytoplankton in de Oosterschelde in de periode 1980 t/m 1984. Nota BALANS 1988-34 (in Dutch).Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • L. P. M. J. Wetsteyn
    • 1
  • J. C. H. Peeters
    • 1
  • R. N. M. Duin
    • 1
  • F. Vegter
    • 2
  • P. R. M. de Visscher
    • 2
  1. 1.Tidal Waters DivisionMinistry of Transport and Public WorksEA MiddelburgThe Netherlands
  2. 2.Delta Institute for Hydrobiological ResearchEA YersekeThe Netherlands

Personalised recommendations