Skip to main content
Log in

Peptides in the Hydrozoa: are they transmitters?

  • Proceedings
  • XII. Physiology and behaviour Transmitters
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A family of peptides with the carboxy-terminus Arg-Phe-amide has been localized to specific subpopulations of neurons in every cnidarian species examined. These neurons are typically sensory in character or are associated with smooth muscle. Although a transmitter role for these peptides has been suggested for anthozoans at neuromuscular synapses, no such evidence is available for hydrozoans. Instead there is evidence that RF-amides can be modulators of neuronal activity which takes the form of a biphasic (inhibitory then excitatory) response in vivo, while in vitro only the inhibitory response is seen. Voltage clamp studies of identified motor neurons showed large, transitory outward currents when Pol-RF-amide peptide was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anctil, M., 1987. Bioactivity of FMRF-amide and related peptides on a contractile system of the coelenterate Renilla kollikeri. J. comp. Physiol. 157: 31–38.

    Google Scholar 

  • Anctil, M., D. Boulay & L. LaRivière, 1982. Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla kollikeri. J. exp. Zool. 223: 11–24.

    Google Scholar 

  • Anctil, M., G. Germain & L. LaRivière, 1984. Catecholamines in the coelenterate Renilla kollikeri. Uptake and radioautographic localization. Cell Tissue Res. 238: 69–80.

    Google Scholar 

  • Anderson, P. A. V. & A. N. Spencer, 1989. The importance of cnidarian synapses for neurobiology. J. Neurobiol. 20: 435–457.

    Google Scholar 

  • Batham, E. J., C. F. A. Pantin & E. A. Robson, 1960. The nerve-net of the anemone Metridium senile; the mesenteries and the column. Q. JI microsc. Sci. 101: 487–510.

    Google Scholar 

  • Bodenmüller, H. & H. C. Schaller, 1981. Isolation and amino acid sequence of a morphogenic peptide from Hydra. Nature, Lond. 293: 579–580.

    Google Scholar 

  • Carlberg, M. & E. Rosengren, 1985. Biochemical basis for adrenergic neurotransmission in coelenterates. J. comp. Physiol. B 155: 251–255.

    Google Scholar 

  • Castano, P. & S. Rossi, 1978. Cytochemical, ultrastructural and fluorescence study of the nervous system of Hydra sp. J. submicrosc. Cytol. 10: 381–395.

    Google Scholar 

  • Chung, J. M., A. N. Spencer & K. H. Gahm, 1989. Dopamine in tissues of the hydrozoan jellyfish Polyorchis penicillatus as revealed by HPLC and GC/MS. J. comp. Physiol. B 159: 173–181.

    Google Scholar 

  • Cottrell, G. A., 1982. FMRF-amide neuropeptides simultaneously increase and decrease K+ currents in an identified neurone. Nature, Lond. 296: 87–89.

    Google Scholar 

  • Dahl E. B. Falck, C. von Mecklenburg & H. Myhrberg, 1963. An adrenergic nervous system in anemones. Q. JI microsc. Sci. 104: 531–534.

    Google Scholar 

  • De Waele, J. P., M. Anctil & M. Carlberg, 1987. Biogenic catecholamines in the cnidarian Renilla kollikeri: radioenzymatic and chromatographic detection. Can. J. Zool. 65: 2458–2465.

    Google Scholar 

  • Graff, D. & C. J. P. Grimmelikhuijzen, 1988. Isolation of <Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Res. 442: 354–358.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., 1983. FMRF-amide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochemistry 78: 361–381.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., 1985. Antisera to the sequence Arg-Phe-amide visualise neuronal centralization in hydroid polyps. Cell Tissue Res. 241: 171–182.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & D. Graff, 1986. Isolation of <Glu-Gly-Arg-Phe-NH2 (Antho-RF-amide), a neuropeptide from sea anemones. Proc. natn. Acad. Sci. U.S.A. 83: 9817–9821.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & A. Groeger, 1987. Isolation of the neuropeptide pGlu-Gly-Arg-Phe-amide from the pennatulid Renilla kollikeri. FEBS Lett. 211: 105–108.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & A. N. Spencer, 1984. FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J. comp. Neurol. 230: 361–371.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., K. Dierickx & G. J. Boer, 1982b. Oxytocin/Vasopressin-like immunoreactivity is present in the nervous system of Hydra. Neuroscience 7: 3191–3199.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., G. J. Dockray & L. P. C. Schot, 1982a. FMRF-amide-like immunoreactivity in the nervous system of Hydra. Histochemistry 73: 499–508.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., G. J. Dockray & N. Yanaihara, 1981c. Bombesin-like immunoreactivity in the nervous system of Hydra. Histochemistry 73: 171–180.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., D. Graff & A. N. Spencer, 1988a. Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In M. C. Thorndyke & G. J. Goldsworthy (eds), Neurohormones in Invertebrates. Soc. exp. Biol. Sem. Ser. 33, Cambridge University Press, Cambridge: 199–217.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., A. N. Spencer & D. Carré, 1986. Organization of the nervous system of physonectid siphonophores. Cell Tissue Res. 246: 463–479.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., R. E. Carraway, Å. Rökaeus & F. Sundler, 1981b. Neurotensin-like immunoreactivity in the nervous system of Hydra. Histochemistry 72: 199–209.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., M. Hahn, K. L. Rinehart & A. N. Spencer, 1988b. Isolation of <Glu-Leu-Leu-Gly-Gly-ArgPhe-NH2 (pol-RF-amide), a novel neuropeptide from hydromedusae. Brain Res. 475: 198–203.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., A. Balfe, P. C. Emson, D. Powell & F. Sundler, 1981a. Substance P-like immunoreactivity in the nervous system of Hydro. Histochemistry 71: 325–333.

    Google Scholar 

  • King, M. G. & A. N. Spencer, 1979. Gap and septate junctions in the excitable endoderm of Polyorchis penicillatus (Hydrozoa: Anthomedusae). J. Cell Sci. 36: 391–400.

    Google Scholar 

  • Koizumi, O., J. D. Wilson, C. J. P. Grimmelikhuijzen & J. A. Westfall, in press. Ultrastructural localization of RF-amide-like peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J. exp. Zool.

  • Mackie, G. O., 1976. The control of fast and slow muscle contractions in the siphonophore stem. In G. O. Mackie (ed.), Coelenterate Ecology and Behavior. Plenum Press, N.Y.: 647–659.

    Google Scholar 

  • Mackie, G. O. & W. K. Stell, 1984. FMRF-amide-like immunoreactivity in the neurons of medusae. Am. Zool. 24: 36A.

  • Mackie, G. O., C. L. Singla & W. K. Stell, 1985. Distribution of nerve elements showing FMRF-amide-like immunoreactivity in Hydromedusae. Acta. zool. 66: 199–210.

    Google Scholar 

  • Martin, S. M. & A. N. Spencer, 1983. Neurotransmitters in coelenterates. Comp. Biochem. Physiol. C 74: 1–14.

    Google Scholar 

  • Martin, V. J., 1988. Development of nerve cells in hydrozoan planulae: II. Examination of sensory cell differentiation using electron microscopy and immunocytochemistry. Biol. Bull. 175: 65–78.

    Google Scholar 

  • McFarlane, I. D., D. Graff & C. J. P. Grimmelikhuijzen, 1987. Excitatory actions of antho-RF-amide, and anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. J. exp. Biol. 133: 157–168.

    Google Scholar 

  • Przysiezniak, J. & A. N. Spencer, 1989. Primary culture of identified neurones from a cnidarian. J. exp. Biol. 142: 97–113.

    Google Scholar 

  • Ruben, P., J. W. Johnson & S. Thompson, 1986. Analysis of FMRF-amide effects on Aplysia bursting neurons. J. Neurosci. 6: 252–259.

    Google Scholar 

  • Satterlie, R. A., 1985. Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea. J. Neurobiol. 16: 41–55.

    Google Scholar 

  • Spencer, A. N., 1988. Effects of Arg-Phe-amide peptides on identified motor neurons in the hydromedusa Polyorchis penicillatus. Can. J. Zool. 66: 639–645.

    Google Scholar 

  • Spencer, A. N. & S. A. Arkett, 1984. Radial symmetry and the organization of central neurones in a hydrozoan jellyfish. J. exp. Biol. 110: 69–90.

    Google Scholar 

  • Venturini, G., O. Silei, G. Palladini, A. Carolei & V. Margotta, 1984. Aminergic neurotransmitters and adenylate cyclase in Hydra. Comp. Biochem. Physiol. 78: 345–348.

    Google Scholar 

  • Westfall, J. A., 1973. Ultrastructural evidence for an granulecontaining sensory-motor-interneuron in Hydra littoralis. J. Ultrastruct. Res. 42: 268–282.

    Google Scholar 

  • Wood, J. G. & T. L. Lentz, 1964. Histochemical localization in Hydra and in the sea anemone. Nature, Lond. 201: 88–90.

    Google Scholar 

  • Zachary, I., P. J. Woll & E. Rozengurt, 1987. A role for neuropeptides in the control of cell proliferation. Devl Biol. 124: 295–308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spencer, A.N. Peptides in the Hydrozoa: are they transmitters?. Hydrobiologia 216, 565–571 (1991). https://doi.org/10.1007/BF00026514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026514

Key words

Navigation