Skip to main content
Log in

Neuropeptides in coelenterates: a review

  • Proceedings
  • XII. Physiology and behaviour Transmitters
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Coelenterate neurones produce peptides containing an Arg-Phe-NH2(RF-amide)-like carboxyterminus. RF-amide-like peptides are located in neuronal dense-cored vesicles, indicating that they are released by exocytosis and that they might function as neurotransmitters or neurohormones. Using a radioimmunoassay for the sequence RF-amide, 3 peptides were isolated from the sea anemone Anthopleura elegantissima: < Glu-Gly-Arg-Phe-NH2(Antho-RF-amide), <Glu-Ser-Leu-Arg-Trp-NH2(Antho-RWamide I) and <Glu-Gly-Leu-Arg-Trp-NH2(Antho-RW-amide II). The general structure of these peptides can be described as <Glu...Arg-X-NH2, where X is an aromatic amino acid. From the hydromedusa Polyorchis penicillatus, the peptide <Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2(Pol-RF-amide I) was isolated, which also belongs to the <Glu...Arg-X-NH2 family. Using specific antisera, it was shown that all 4 peptides were located in neurones, many of which were associated with smooth muscle fibres. Application of low doses of Antho-RF-amide or of Antho-RW-amide I and II induced contractions of endodermal muscles of sea anemones. This suggests that these peptides are transmitters or modulators at neuromuscular junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, P. A. V., 1985. Physiology of a bidirectional, excitatory, chemical synapse. J. Physiol. 53: 821–835.

    Google Scholar 

  • Anderson, P. A. V. & G. O. Mackie, 1977. Electrically coupled, photosensitive neurons control swimming in a jellyfish. Science, N.Y. 197: 186–188.

    Google Scholar 

  • Anderson, P. A. V. & W. E. Schwab, 1982. Recent advances and model systems in coelenterate neurobiology. Prog. Neurobiol. 19: 213–236.

    Google Scholar 

  • Davis, L. E., A. L. Burnett & J. F. Haynes, 1968. Histological and ultrastructural study of the muscular and nervous system in Hydra, II. Nervous system. J. exp. Zool. 167: 295–332.

    Google Scholar 

  • Graff, D. & C. J. P. Grimmelikhuijzen, 1988a. Isolation of <Glu-Ser-Leu-Arg-Trp-NH2, a novel neuropeptide from sea anemones. Brain Res. 442: 354–358.

    Google Scholar 

  • Graft, D. & C. J. P. Grimmelikhuijzen, 1988b. Isolation of <Glu-Gly-Leu-Arg-Trp-NH2 (Antho-RWamide II), a novel neuropeptide from sea anemones. FEBS Lett. 239: 137–140.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., 1983. FMRFamide immunoreactivity is generally occurring in the nervous system of coelenterates. Histochemistry 78: 361–381.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., 1985. Antisera to the sequence Arg-Phe-amide visualize neuronal centralization in hydroid polyps. Cell Tissue Res. 241: 171–182.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & D. Graft, 1986. Isolation of <Glu-Gly-Arg-Phe-NH2 (Antho-RFamide), a neuropeptide from sea anemones. Proc. natn. Acad. Sci. U.S.A. 83: 9817–9821.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & A. Groeger, 1987. Isolation of the neuropeptide pGlu-Gly-Arg-Phe-amide from the pennatulid Renilla köllikeri. FEBS Lett. 211: 105–108.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P. & A. N. Spencer, 1984. FMRFamide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus. J. comp. Neurol. 230: 361–371.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., G. J. Dockray & L. P. C. Schot, 1982. FMRFamide-like immunoreactivity in the nervous system of hydra. Histochemistry 73: 499–508.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., D. Graff & I. D. McFarlane, 1987. Neuropeptides in invertebrates. In M. A. Ali(ed.), Nervous Systems in Invertebrates. Plenum Press, N.Y.: 105–132.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., D. Graff & I. D. McFarlane, 1989. Neurones and neuropeptides in coelenterates. Arch. Histol. Cytol. 52 (Suppl.): 265–276.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., D. Graff & A. N. Spencer, 1988a. Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates. In M. C. Thorndyke & G. J. Goldsworthy (eds), Neurohormones in Invertebrates. Cambridge Univ. Press, Cambridge: 199–217.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., A. N. Spencer & D. Carré, 1986. Organization of the nervous system of physonectid siphonophores. Cell Tissue Res. 246: 463–479.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., M. Hahn, K. L. Rinehart & A. N. Spencer, 1988b. Isolation of <Glu-Leu-Leu-Gly-Gly-ArgPhe-NH2 (Pot-RFamide), a novel neuropeptide from hydromedusae. Brain Res. 475: 198–203.

    Google Scholar 

  • Hadž, J., 1909. Über das Nervensystem von Hydra, Arb. zool. Inst. Wien 17: 225–268.

    Google Scholar 

  • Hertwig, O. & R. Hertwig, 1878. Das Nervensystem and die Sinnesorgane der Medusen. Vogel, Leipzig.

    Google Scholar 

  • Kinnamon, J. C. & J. A. Westfall, 1981. A three-dimensional serial reconstruction of neuronal distributions in the hypostome of a Hydra. J. Morphol. 168: 321–329.

    Google Scholar 

  • Koizumi, O., J. D. Wilson, C. J. P. Grimmelikhuijzen & J. A. Westfall, 1989. Ultrastructural localization of RFamidelike peptides in neuronal dense-cored vesicles in the peduncle of Hydra. J. exp. Zool. 249: 17–22.

    Google Scholar 

  • Mackie, G. O., 1973. Report on giant nerve fibres in Nanomia. Publs Seto mar. Lab. 20: 745–756.

    Google Scholar 

  • Mackie, G. O., C. L. Singla & S. A. Arkett, 1988. On the nervous system of Vellela (Hydrozoa: Chondrophora). J. Morphol. 198: 15–23.

    Google Scholar 

  • Mackie, G. O., C. L. Singla & W. K. Stell, 1985. Distribution of nerve elements showing FMRFamide-like immunoreactivity in Hydromedusae. Acta zool., Stockh. 66: 199–210.

    Google Scholar 

  • Matsuno, T. & T. Kageyama, 1984. The nervous system in the hypostome of Pelmatohydra robusta: the presence of a circumhypostomal nerve ring in the epidermis. J. Morphol. 182: 153–168.

    Google Scholar 

  • McFarlane, I. D., 1973. Spontaneous contractions and nerve-net activity in the sea anemone Calliactis parasitica. Mar. Behav. Physiol. 2: 97–113.

    Google Scholar 

  • McFarlane, I. D., D. Graff & C. J. P. Grimmelikhuijzen, 1987. Excitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. J. exp. Biol. 133: 157–168.

    Google Scholar 

  • McFarlane, I. D., D. Graff & C. J. P. Grimmelikhuijzen, 1989. Evolution of conducting systems and neurotransmitters in the Anthozoa. In P. A. V. Anderson(ed.), Evolution of the First Nervous Systems. Plenum Press, N.Y.: 111–127.

    Google Scholar 

  • Price, D. A. & M. Greenberg, 1977. Structure of a molluscan cardioexcitatory neuropeptide. Science, N.Y. 197: 670–671.

    Google Scholar 

  • Satterlie, R. A., 1979. Central control of swimming in the cubomedusan jellyfish Charibdea rastonii. J. comp. Physiol. 133: 357–367

    Google Scholar 

  • Spencer, A. N., 1978. Neurobiology of Polyorchis, I. Function of effector systems. J. Neurobiol. 9: 143–157.

    Google Scholar 

  • Spencer, A. N., 1979. Neurobiology of Polyorchis, II. Structure of effector systems. J. Neurobiol. 10: 95–117.

    Google Scholar 

  • Spencer, A. N., 1982. The physiology of a coelenterate neuromuscular synapse. J. comp. Physiol. 148: 353–363.

    Google Scholar 

  • Spencer, A. N. & S. A. Arkett, 1984. Radial symmetry and the organization of central neurones in hydrozoan jellyfish. J. exp. Biol. 110: 69–90.

    Google Scholar 

  • Spencer, A. N. & R. A. Satterlie, 1980. Electrical and dye coupling in an identified group of neurons in a coelenterate. J. Neurobiol. 11: 13–19.

    Google Scholar 

  • Weber, C., 1989. Smooth muscle fibers of Podocoryne carnea (Hydrozoa) demonstrated by a specific monoclonal antibody and their association with neurons showing FMRFamide-like immunoreactivity. Cell Tissue Res. 255: 275–282.

    Google Scholar 

  • Westfall, J. A., 1973. Ultrastructural evidence for a granule containing sensory-motor-interneuron in Hydra littoralis. J. Ultrastruct. Res. 42: 268–282.

    Google Scholar 

  • Westfall, J. A., 1987. Ultrastructure of invertebrate synapses. In M. A. Ali (ed.), Nervous Systems in Invertebrates. Plenum Press, N.Y.: 3–28.

    Google Scholar 

  • Westfall, J. A. & J. C. Kinnamon, 1978. A second sensorymotor-interneuron with neurosecretory granules in Hydra. J. Neurocytol. 7: 365–379.

    Google Scholar 

  • Westfall, J. A., J. C. Kinnamon & D. E. Sims, 1980. Neuroepitheliomuscular cell and neuro-neuronal gap junctions in Hydra. J. Neurocytol. 9: 725–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimmelikhuijzen, C.J.P., Graff, D., Koizumi, O. et al. Neuropeptides in coelenterates: a review. Hydrobiologia 216, 555–563 (1991). https://doi.org/10.1007/BF00026513

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026513

Key words

Navigation