Skip to main content
Log in

Solubility of cadmium and cobalt in a post-oxic or sub-oxic sediment suspension

  • Element cycling
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A sediment sample with high organic matter and trace metal content was suspended in synthetic river water for four weeks under an inert gas atmosphere. Subsequently, the anaerobic suspension was reoxidized by bubbling air through it. The concentrations of dissolved oxygen, sulfide, ferrous iron, manganese, cadmium, cobalt and the pH-value were measured at close time intervals during the anaerobic incubation. The anaerobic suspension was a post-oxic or sub-oxic environment with oxygen and total sulfide concentrations less than 1 µmole 1−1. Concentrations of dissolved ferrous iron and manganese were 50–150 µmole 1−1 and 5–30 µmole 1−1, respectively. The total sulfide concentration was measured using a sensitive voltammetric technique, with a detection limit of 1 nmole 1−1. A sequential extraction procedure was applied to two sediment samples taken at the end of the anaerobic incubation and after one week of reoxidation. The extractions indicated that cadmium was bound in sulfide minerals under post-oxic conditions. Thermodynamic equilibrium calculations revealed that the concentrations of dissolved cobalt in the post-oxic suspension were limited by the precipitation of cobalt sulfide minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berner, R. A., 1981. A new geochemical classification of sedimentary environment. J. Sediment. Petrol. 51: 359–365.

    Google Scholar 

  • Davison, W., 1977. The polarographic measurement of O2, Fe2+, Mn2+ and S2− in hypolimnetic water. Limnol. Oceanogr. 22: 746–752.

    Google Scholar 

  • Davison, W. & C. D. Gabbutt, 1979. Polarographic methods for measuring uncomplexed sulphide ions in natural waters. J. Electroanal. Chem. 99: 311–320.

    Google Scholar 

  • Dyrssen, D., 1988. Sulfide complexation in surface seawater. Mar. Chem. 24: 143–13.

    Google Scholar 

  • Emerson, S., R. Jahnke & D. Heggie, 1984. Sediment-water exchange in shallow water estuarine sediments. J. mar. Res. 42: 709–730.

    Google Scholar 

  • Evans, R. D., D. Andrews & R. J. Cornett, 1988. Chemical fractionation and bio-availability of cobalt-60 to benthic deposit-feeders. Can. J. Fish. aquat. Sci. 45: 228–236.

    Google Scholar 

  • Florence, T. M., 1979. Cathodic stripping voltammetry. Part I: Determination of organic sulfur compounds, flavins and porphyrins at the sub-micromolar level. J. Electroanal. Chem. 97: 219–236.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early diagenesis of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.

    Google Scholar 

  • Gobeil, C., N. Silverberg, B. Sundby & D. Cossa, 1987. Cadmium diagenesis in Laurentian Trough sediments. Geochim. Cosmochim. Acta 51: 589–596.

    Google Scholar 

  • Heggie, D. & T. Lewis, 1984. Cobalt in pore waters of marine sediments. Nature 311: 453–455.

    Google Scholar 

  • Huerta-Diaz, M. A., 1989. Geochemistry of trace metals associated with sedimentary pyrite from anoxic marine environments. Ph.D. thesis, Texas A&M University.

  • Jacobs, L. & S. Emerson, 1982. Trace metal solubility in an anoxic fjord. Earth Planet. Sci. Lett. 60: 237–252.

    Google Scholar 

  • Kersten, M. & U. Förstner, 1986. Chemical fractionation of heavy metals in anoxic estuarine sediments. Wat. Sci. Technol. 18: 121–130.

    Google Scholar 

  • Kersten, M. & U. Förstner, 1987. Effect of sample pretreatment on the reliability of solid speciation data of heavy metals. — Implications for the study of early diagenetic processes. Mar. Chem. 22: 299–312.

    Google Scholar 

  • Klinkhammer, G. P., D. T. Heggie & D. W. Graham, 1982. Metal diagenesis in oxic sediments. Earth Planet. Sci. Lett. 49: 81–101.

    Google Scholar 

  • Kremling, K., 1983. The behavior of Zn, Cd, Cu, Ni, Co, Fe and Mn in anoxic Baltic waters. Mar. Chem. 13: 87–103.

    Google Scholar 

  • Luther III, G. W. & E. Tsamakis, 1989. Concentration and form of dissolved sulfide in the oxic water column of the ocean. Mar. Chem. 27: 165–177.

    Google Scholar 

  • Lyons, W. B. & W. F. Fitzgerald, 1983. Trace metals speciation in nearshore anoxic and suboxic pore waters. In C. S. Wong, E. Boyle, K. W. Bruland, J. D. Burton, E. D. Goldberg (eds), Trace Metals in Sea Water. Plenum Press, New York, London: 621–641.

    Google Scholar 

  • Martell, A. E. & R. M. Smith, 1976. Critical Stability Constants, Vol. 3. Plenum Press, New York, London.

    Google Scholar 

  • Naumov, G. B., B. N. Ryzenko & I. L. Khodakovsky, 1984. Handbook of thermodynamic data, National Technical Information System, U.S. Department of Commerce.

  • Orion Research Inc., 1969. Application Bulletin No. 12.

  • Rapin, F., A. Tessier, P. G. C. Campbell & R. Carignan, 1986. Potential artifacts in the determination of metal partitioning in sediments by a sequential extraction procedure. Envir. Sci. Technol. 20: 836–840.

    Google Scholar 

  • Sainte Marie, J., A. E. Thoma & A. O. Gubeli, 1964. The stability of thio-complexes and solubility products of metal sulphides. I. Cadmium sulphide. Can. J. Chem. 42: 662–668.

    Google Scholar 

  • Sawlan, J. J. & J. W. Murray, 1983. Trace metal remobilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth. Planet. Sci. Lett. 64: 213–230.

    Google Scholar 

  • Shaw, T. J., J. M. Gieskes, R. A. Jahnke, 1990. Early diagenesis in differing depositional environments: The response of transition metals in pore water. Geochim. Cosmochim. Acta 54: 1233–1246.

    Google Scholar 

  • Smith, R. M. & A. E. Martell, 1976. Critical Stability Constants, Vol. 4. Plenum Press, New York, London.

    Google Scholar 

  • Smith, R. M. & A. E. Martell, 1982. Critical Stability Constants, Vol. 5. Plenum Press, New York, London.

    Google Scholar 

  • Smith, R. M. & A. E. Martell, 1989. Critical Stability Constants, Vol. 6. Plenum Press, New York, London.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1981. Aquatic Chemistry. John Wiley & Sons, New York.

    Google Scholar 

  • Tessier, A., P. G. C. Campbell & M. Bisson, 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analyt. Chem. 51: 844–851.

    Google Scholar 

  • Wallmann, K., 1990. Die Frühdiagenese und ihr Einfluß auf die Mobilität der Spurenelemente As, Cd, Co, Cu, Ni, Pb und Zn in Sediment- und Schwebstoffsuspensionen. Ph.D. Thesis, Technological University of Hamburg-Harburg, FRG.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallmann, K. Solubility of cadmium and cobalt in a post-oxic or sub-oxic sediment suspension. Hydrobiologia 235, 611–622 (1992). https://doi.org/10.1007/BF00026249

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00026249

Key words

Navigation