Hydrobiologia

, Volume 191, Issue 1, pp 249–254 | Cite as

Stir-up effect of wind on a more-or-less stratified shallow lake phytoplankton community, Lake Balaton, Hungary

  • Judit Padisák
  • László G.-Tóth
  • Miklós Rajczy
Short-term changes and pilot-scale operations

Abstract

Microstratification of phytoplankton in the large shallow Lake Balaton (Hungary) was studied during a 24 h period. Dissolved O2 showed biological stratification; flagellates exhibited a definite circadian rhythm. In the middle of the investigation a heavy storm broke out which was followed by the disappearance of differences between different layers of water. Storm-induced destratification is described by cluster-analysis. Abundances of dominant species changed differently in connection with the storm. Numbers of Nitzschia sp. increased due to stirring up from the sediment surface. Numbers of single-celled or colony-forming species (Cyclotella comta, Crucigenia quadrata, Coelosphaerium kuetzingianum) practically did not change. Numbers of all the three dominant filamentous species (Aphanizomenon fos-aquae f. klebahnii, Lyngbya limnetica, Planctonema lauterbornii) significantly decreased, which might be attributed to an unknown loss process and was followed by a competitive displacement by algae of small cell size.

Key words

shallow lakes phytoplankton seasonal succession short-term changes mixing filamentous algae loss processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crumpton, W. G. & R. G. Wetzel, 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729–1739.Google Scholar
  2. Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.Google Scholar
  3. Entz, B., 1980. Physical and chemical microstratification in the shallow Lake Balaton and their possible biotic and abiotic aspects. In Dokulil, M., H. Metz & D. Jewson (eds). Shallow lakes. Contribution to their limnology. Developments in Hydrobiology 3. 63–72. W. Junk Publ. The Hague, Boston, London.Google Scholar
  4. G.-Tóth, L., 1982. Numbers, biomass and production of algae smaller than 10 µ in Lake Balaton. Aquacultura Hungarica (Szarvas) 3: 145–158.Google Scholar
  5. G.-Tóth, L., J. Padisák, 1978. Short-term investigations on the phytoplankton of Lake Balaton at Tihany. Acta Botanica Acad. Sci. Hung. 24: 187–204.Google Scholar
  6. G.-Tóth, L. & J. Padisák, 1986. Meteorological factors affecting the bloom of Anabaenopsis raciborskii Wolosz. (Cyanophyta: Hormogonales) in the shallow Lake Balaton, Hungary. J. Plankton Res. 8: 353–363.Google Scholar
  7. Hummon, W. D., 1974. A similarity index based on shared species diversity used to assess temporal and spatial relations among marine Gastrotricha. Oecologia (Berl.) 17: 203–220.Google Scholar
  8. Istvánovics, V., 1988. Seasonal variation of phosphorus release from sediments of shallow Lake Balaton, Hungary. Wat. Res. 22: 1473–1481.Google Scholar
  9. Istvánovics, V., L. Vörös, S. Herodek, L. G.-Tóth & I. Tátrai, 1986. Changes of phosphorus and nitrogen concentrations and of phytoplankton in enriched lake enclosures. Limnol. Oceanogr. 31: 798–811.Google Scholar
  10. Lund, J. W. G., 1971. An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English Lake. J. Ecol. 59: 521–533.Google Scholar
  11. Lund, J. W. G., C. Kipling & E. D. Le Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.Google Scholar
  12. Margalef, R., 1960. Temporal succession and spatial heterogeneity in phytoplankton. In Buzzati-Traverso, A. A. (ed). Perspectives in marine biology: 329–349. Univ. Calif. Press, Berkeley, Los Angeles.Google Scholar
  13. Padisák, J., 1980. Short-term studies on the phytoplankton of Lake Balaton in the summers of 1976, 1977 and 1978. Acta Botanica Acad. Sci. Hung. 26: 397–416.Google Scholar
  14. Padisák, J., 1985. Population dynamics of the dinoflagellate Ceratium hirundinella in the largest shallow lake of Central Europe, Lake Balaton, Hungary. Freshwat. Biol. 15: 43–52.Google Scholar
  15. Padisák, J., L. G.-Tóth & M. Rajczy, 1988. The role of storms in the summer succession of the phytoplankton community in a shallow lake (Lake Balaton, Hungary). J. Plankton Res. 10: 249–265.Google Scholar
  16. Rajczy, M. & J. Padisák, 1983. Divdrop analysis — a new method for interpretation of species importance in diversity changes. Annal. hist-nat. Mus. natn. Hung. 75: 97–105.Google Scholar
  17. Reynolds, C. S., 1983a. A physiological interpretation of the dynamic responses of populations of a planktonic diatom to physical variability of the environment. New Phytol. 95: 41–53.Google Scholar
  18. Reynolds, C. S., 1983b. Growth rate responses of Volvox aureus Ehrenb. (Chlorophyta, Volvocales) to variability in the physical environment. Br. Phycol. J. 18: 433–442.Google Scholar
  19. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge.Google Scholar
  20. Reynolds, C. S., H. R. Morison & C. Butterwick, 1982. The sedimentary flux of phytoplankton in the south basin of Windermere. Limnol. Oceanogr. 27: 1162–1175.Google Scholar
  21. Reynolds, C. S., S. W. Wiseman & M. J. Clarke, 1984. Growth- and loss rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. Appl. Ecol. 21: 11–39.Google Scholar
  22. Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics or phytoplankton populations in large limnetic enclosures. J. Plankton Res. 5: 203–234.Google Scholar
  23. Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy. Freeman, San Francisco.Google Scholar
  24. Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta Oecol., Oecol. gen. 2: 327–342.Google Scholar
  25. Squires, L. E., M. C. Whiting, J. D. Brotherson & S. Rushforth, 1979. Competitive displacement as a factor influencing phytoplankton distribution in Utah Lake, Utah. Great Basin Naturalist 39: 245–252.Google Scholar
  26. Szebellédy, L. (ed.), 1970. KGST Egységes vizvizsgálati módszerek (COMECON methods of water chemical analyses) I. Vituki, Budapest.Google Scholar
  27. Tamás, G., 1975. Horizontally occurring phytoplankton investigations in Lake Balaton, 1974. Annal. Inst. Biol. Acad. Sci. Hung. 42: 219–279.Google Scholar
  28. Vörös, L. & N. Kiss, 1985: A fitoplankton szezonális periodicitása és annak összefüggése az eutrofiz'alódással. Irodalmi áttekintés és esettanulmány (Seasonal periodicity of phytoplankton and its correlation with the eutrophication. Review and case study). In Fekete, G. (ed.) A cönológiai szukcesszió kérdései (Problems of the coenological succession). Biológiai Tanulmányok 12: 121–134, Akadémiai Kiadó, Budapest.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Judit Padisák
    • 1
  • László G.-Tóth
    • 2
  • Miklós Rajczy
    • 1
  1. 1.Botanical Department of the Hungarian Natural History MuseumBudapestHungary
  2. 2.Balaton Limnological Research Institute of the Hungarian Academy of SciencesTihanyHungary

Personalised recommendations