Skip to main content
Log in

The annual cycle of heat content and mechanical stability of hypersaline Deep Lake, Vestfold Hills, Antarctica

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Deep Lake, a hypersaline lake of about ten times seawater concentration, rarely freezes and is characterized by a monomictic thermal cycle, Winter circulation, at c. −17 °C, lasts for two to three months. In summer, epilimnetic temperatures from 7–11 °C result in large vertical thermal gradients (21–26 °C) which combine with the enhanced rate of density change per degree Celsius, accompanying such high salt concentration, to produce a particularly stable density configuration in Deep Lake (Schmidt stability c. 8000 g-cm cm−2; 0.785 J cm−2). The Birgean annual heat budget (c. 24500 cal cm−2; 102.7 103 J cm−2) is comparable to that of a temperate lake with a similar mean depth, despite the comparatively high ratio of Birgean wind work to annual heat budget (0.37 g-cm cal−1). Deep lake retains c. 50% of the incident solar radiation during the short summer heating period; within the range estimated for ‘first class’ lakes in North America. Extended daylight hours certainly contribute to the high maximum rate of heating in the lake (444 cal cm−2 day−1; 1.86 103 J cm−2 day−1). Deep Lake cools at a rate less than half its average heating rate. Partitioning the total stability into thermal and saline components shows that salinity can contribute up to c. 20% of the maximum summer Schmidt stability. In early summer, the effect of small melt-streams is to increase stability by diluting the epilimnion. In autumn, evaporative water loss can overtake this effect, creating small de-stabilizing salinity gradients. The usually short-term stabilizing influence of snowfall and drift is less predictable, but is probably more common in winter when strong winds are most frequent.

Hypersalinity has a profound effect on the physical cycle of Deep Lake, through freezing point depression and the increased rate of density change with temperature. These changes affect the lake's biota, both in relation to osmotic stress, and by effectively exposing them to a more thermally extreme environment. A comparison between Deep Lake and a smaller lake of similar salinity (Lake Hunazoko, Skarvs Nes), demonstrates that it is inappropriate to consider the biological effects of salinity in isolation. The smaller lake offers warmer epilimnetic conditions for at least part of the summer, which may explain the much greater limnetic algal production in Lake Hunazoko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, M., 1975. Plankton and bottom deposits of Lake Funazoko-ike in Skarvs Nes, Antarctica. Shimane University Education Dept. Lett. 9: 29–42.

    Google Scholar 

  • Barker, R. J., 1981. Physical and chemical parameters of Deep Lake, Vestfold Hills, Antarctica. ANARE Scientific Report, Publication No. 130. Aust. Govt. Publ. Service, Canberra, 73 pp.

    Google Scholar 

  • Bienati, N. L., 1967. Estudio limnologico del lago Irizar, Isla Decepcion, Shetland del Sur. Contribucion del Instituto Antarctico Argentino No. 111: 1–36.

  • Birge, E. A., 1916. The work of the wind in warming a lake. Trans. Wis. Acad. Sci. Arts Lett. 18(2): 341–391.

    Google Scholar 

  • Brezonick, P. L., 1972. Nitrogen: Sources and transformations in natural waters. In H. E. Allen & J. R. Kramer (eds) Nutrients in Natural Waters. J. Wiley & sons, N.Y.: 1–50.

    Google Scholar 

  • Burton, H. R., 1981. Chemistry, physics and evolution of antarctic saline lakes — a review. Hydrobiologia 82: 339–362.

    Google Scholar 

  • Burton, H. R. & P. J. Campbell, 1980. The climate of the Vestfold Hills, Davis Station, Antarctica, with a note on its effect on the hydrology of hypersaline Deep Lake. ANARE Scientific Report, Publication No. 129. Aust. Govt. Publ. Service, Canberra., 50 pp.

    Google Scholar 

  • Campbell, P. J., 1978. Primary productivity of a hypersaline antarctic lake. Aust. J. Mar. Freshwat. Res. 29: 717–724.

    Google Scholar 

  • Campos, H., J. Arenas, W. Steffen & G. Agüero, 1978. Physical and chemical limnology of Lake Riñihue (Valdivia, Chile). Arch. Hydrobiol. 84: 405–429.

    Google Scholar 

  • Carmack, E. C., C. B. J. Gray, C. H. Pharo & R. J. Daley, 1979. Importance of lake-river interactions on seasonal patterns in the general circulation of Kamloops Lake, British Columbia. Limnol. Oceanogr. 24: 634–644.

    Google Scholar 

  • Darbyshire, J. & A. Edwards, 1972. Seasonal formation and movement of the thermocline in lakes. Pure & Applied Geophysics, 93: 141–150.

    Google Scholar 

  • Gibson, C. E. & D. A. Stewart, 1973. The annual temperature cycle of Lough Neagh. Limnol. Oceanogr. 18: 791–793.

    Google Scholar 

  • Goreham, E., 1964. Morphometric control of annual heat budgets in temperate lakes. Limnol. Oceanogr. 9: 525–529.

    Google Scholar 

  • Hand, R. M., 1980. Bacterial populations of two saline antarctic lakes. In P. A. Trudinger & M. R. Walters (eds), Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra: 123–129.

    Google Scholar 

  • Heywood, R. B., 1984. Antarctic inland waters. In R. M. Laws (ed.), Antarctic Ecology, 1. Academic Press, Lond.: 279–344.

    Google Scholar 

  • Hutchinson, G. E., 1957. A Treatise on Limnology, 1. Geography, Physics and Chemistry. J. Wiley & sons, N.Y., 1015 pp.

    Google Scholar 

  • Idso, S. B., 1973. On the concept of lake stability. Limnol. Oceanogr. 18: 681–683.

    Google Scholar 

  • Johnson, N. M. & D. H. Merritt, 1979. Convective and advective circulation of Lake Powell, Utah-Arizona, During 1972–1975. Wat. Resour. Res. 15: 873–884.

    Google Scholar 

  • Johnson, N. M., J. S. Eaton & J. E. Richey, 1978. Analysis of five North American lake ecosystems II. Thermal energy and mechanical stability. Verh. Int. Ver. Limnol. 20: 562–567.

    Google Scholar 

  • Kerry, K. R., D. R. Grace, R. Williams & H. R. Burton, 1977. Studies on some saline lakes of the Vestfold Hills, Antarctica. In G. A. Llano (ed.) Adaptations within Antarctic Ecosystem. Smithsonian Institution, Washington D.C.: 839–858.

    Google Scholar 

  • Lewis, W. M., Jr., 1984. A five year record of temperature, mixing, and stability for a tropical lake (Lake Valencia, Venezuela). Arch. Hydrobiol. 99: 340–346.

    Google Scholar 

  • Mason, D. T., 1967. Limnology of Mono Lake, California. University of California Press, Berkeley and Los Angeles, 110 pp.

    Google Scholar 

  • McLeod, I. R., 1964. The saline lakes of the Vestfold Hills, Princess Elizabeth Land. In R. J. Adie (ed.) Antarctic Geology. North Holland, Amsterdam: 65–72.

    Google Scholar 

  • Mortimer, C. H., 1974. Lake hydromechanics. Mitt. Int. Ver. Limnol. 20: 124–197.

    Google Scholar 

  • Nissenbaum, A., 1979. Life in a dead sea — fables, allegories, and scientific search. Bioscience. 29: 153–157.

    Google Scholar 

  • Parker, B. C. & G. M. Simmons, Jr., 1978. Ecosystem comparisons of oasis lakes and soils. Antarct. J. U.S. 13(4): 168–169.

    Google Scholar 

  • Richerson, P. J., C. Widmer, T. Kittel, & A. Landa C., 1975. A survey of the physical and chemical limnology of Lake Titicaca. Verh. int. Ver. Limnol. 19: 1498–1503.

    Google Scholar 

  • Rippey, B., 1983. The physical limnology of Augher Lough (Northern Ireland). Freshwat. Biol. 13: 353–362.

    Google Scholar 

  • Sampson, R. J., 1978. Surface II graphics system (revised). Kansas Geological Survey Lawrence, 240 pp.

  • Tominage, H. & F. Fukui, 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia 82: 375–389.

    Google Scholar 

  • Viner, A. B., 1984. Resistance to mixing in New Zealand lakes. N.Z.J. Mar. Freshwat. Res. 18: 73–82.

    Google Scholar 

  • Walker, K. F., 1974. The stability of meromictic lakes in central Washington. Limnol. Oceanogr. 19: 209–222.

    Google Scholar 

  • Watanuki, T. & M. Ohno, 1975. Cultivation of antarctic microalgae (2). Isolation and culture of antarctic diatom Acnanthes brevipes var. intermedia from the bottom sand of the salt lakes at Skarvs Nes in Lützow-Holm Bay, Antarctica. Antarctic Record 54: 94–100.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology, (2nd edition). Saunders College Publishing, N.Y., 767 pp.

    Google Scholar 

  • Williams, R., 1979. Phytoplankton populations in an antarctic saline lake. M.Sc. thesis, University of Melbourne.

  • Whitfield, M. & D. Jagner (eds), 1981. Marine Electrochemistry. A Practical Introduction. J. Wiley & sons, N.Y., 529 pp.

    Google Scholar 

  • Wright, S. W. & H. R. Burton, 1981. The biology of antarctic saline lakes. Hydrobiologia 82: 319–338.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, J.M., Burton, H.R. The annual cycle of heat content and mechanical stability of hypersaline Deep Lake, Vestfold Hills, Antarctica. Hydrobiologia 165, 115–128 (1988). https://doi.org/10.1007/BF00025579

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025579

Key words

Navigation