Skip to main content
Log in

Present aspects of induced mutations in plant breeding

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The present status of the utilization of induced mutations in plant breeding is briefly reviewed. It is concluded that with induced mutations in principle successes can be expected similar to those with the conventional breeding methods. Owing to the relatively small yield of progressive mutations the efficiency of mutation breeding, however, is rather poor at present. Greater efficiency may be expected with increased knowledge of both control of original mutation production and of selection.

Control of mutation production seems to be possible in at least three ways, (a) by raising the total mutation frequency (b) by changing the relative frequency of chromosome versus point mutations and (c) by altering the spectrum of point mutations. The possibilities of such control through the diverse action of different radiations given with or without modifying agents is reviewed and various mutagenic chemicals are mentioned.

Control of mutation selection may be achieved in two ways, (a) by a better understanding of diplontic selection (intrasomatic selection) of mutated cells and (b) by developing appropriate screening methods. A working hypothesis concerning the diplontic selection is briefly outlined. The “one initial cell theory” means that the greatest efficiency of mutation production can be expected after radiation of primordia or young buds with only one or a few initial cells which will form the tissue of interest. It is hoped that by this the intercellular competition is restricted and a reduced elimination of mutated cells will result.

Procedures for selection of mutants, at least in barley, can already start with M1-spikes. It was shown that completely fertile M1-spikes possess the same frequency of point mutations (chlorophyll mutations) as those with disturbed fertility. Selection of fertile M1-spikes should, therefore, eliminate to a large extent the undesirable chromosome mutations and in this way increase the efficiency of screening for progressive mutations. Maximum mutation frequencies of fertile M1-spikes can, however, only be achieved if the tillering is reduced.

It is suggested that more emphasis be put on screening of small mutations, which may generally be expected to have a greater importance for practical purposes than drastic deviations. Usually screening of micro vital-mutations will be advisable in the M3-generation. Indicator characters may be found through mass selection methods which by their pleiotropic gene action also effect properties eventually of breeding value.

Samenvatting

Na een kort overzicht van de perspectieven voor toepassing van kunstmatige mutatie bij de plantenveredeling wordt nader ingegaan op enige problemen die thans de aandacht hebben. Voor het beheersen van de kunstmatige mutaties is het van veel belang de frequentie van mutatie te kunnen vergroten en te kunnen bevorderen dat relatief minder chromosoom- en meer gen-mutaties tot stand komen. Vooral van de micromutaties verwacht schrijver vooruitzichten voor de plantenveredeling. Het is echter thans nog zeer moeilijk daarop te selecteren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, R., The induction of vegetative mutations in Ribes nigrum. Hereditas 43 (1957): 323–337.

    Google Scholar 

  2. Baur, E., Untersuchungen über das Wesen, die Entstehung und die Vererbung von Rassenunter-schieden bei Antirrhinum majus. Bibliotheca Genetica 4 (1924): 1–170.

    Google Scholar 

  3. Berg, K. H. v., Autotetraploidie bei Hordeum bulbosum L.. Züchter 8 (1936): 151–158.

    Google Scholar 

  4. Brücher, H., Experimentelle Untersuchungen über den Selektionswert künstlich erzeugter Mutanten von Antirrhinum majus. Z. f. Botanik 39 (1943): 1–47.

    Google Scholar 

  5. Caldecott, R. S. and L. Smith, The influence of heat treatments on the injury and cytogenetic effects of X-rays on barley. Genetics 37 (1952): 136–157.

    Google Scholar 

  6. Caldecott, R. S., B. H. Beard and C. O. Gardner, Cytogenetic effects of X-ray and thermal neutron irradiation on seeds of barley. Genetics 39 (1954): 240–259.

    Google Scholar 

  7. D'Amato, F. and Å. Gustafsson, Studies on the experimental control of the mutation process. Hereditas 34 (1948): 181–192.

    Google Scholar 

  8. Delaunay, L. N., Resultate eines dreijährigen Röntgenversuches mit Weizen. Züchter 3 (1931): 129–137.

    Google Scholar 

  9. Demerec, M, What is a gene? — Twenty years later. The Amer. Naturalist 89 (1955): 5–20.

    Google Scholar 

  10. Ehrenberg, L. and N. Nybom, Ion density and biological effectiveness of radiations. Acta Agr. Scand. 4 (1954): 396–418.

    Google Scholar 

  11. Ehrenberg, L., Å. Gustafsson and D. v. Wettstein, Studies on the mutation process in plants-regularities and intentional control. “Conference on Chromosomes”, W. E. J. Tjeenk Willink, Zwolle, the Netherlands, 1956: 131–159.

    Google Scholar 

  12. Ehrenberg, L. and Å. Gustafsson, On the mutagenic action of ethylene oxide and diepoxybutane in barley. Hereditas 43 (1957): 595–602.

    Google Scholar 

  13. Elliott, F. C., X-ray induced translocation of Agropyron stem rust resistance to common wheat. Journ. of Heredity 48 (1957): 77–81.

    Google Scholar 

  14. Elliott, F. C., Induced translocations in wheat. Wheat Information Service 5 (1957): 4.

    Google Scholar 

  15. Fahmy, O. G. and Myrtle J. Fahmy, Further evidence for differential effects of mutagens in Drosophila melanogaster. J. of Genetics 55 (1957): 280–287.

    Google Scholar 

  16. Freisleben, R. und A. Lein, Uber die Auffindung einer mehltauresistenten Mutante nach Röntgenbestrahlung einer anfälligen reinen Linie von Sommergeste. Naturwiss. 30 (1942): 608.

    Google Scholar 

  17. Freisleben, R. und A. Lein, Möglichkeiten und praktische Durchführung der Mutationszüchtung. Kühn-Archiv 60 (1943): 211–225.

    Google Scholar 

  18. Fröier, K., Aspects of the agricultural value of certain barley X-ray mutations produced and tested at the Swedish Seed Association, Svalöf, and its branch stations. Acta Agr. Scand. 4 (1954): 515–542.

    Google Scholar 

  19. Gaul, H., Genomanalytische Untersuchungen bei Triticum x Agropyrum intermedium unter Berücksichtigung von Secale cereale x A. intermedium. Z. ind. Abst. Vererbgsl. 85 (1953): 505–546.

    Google Scholar 

  20. Gaul, H., Asynapsis und ihre Bedeutung für die Genomanalyse. Z. ind. Abst. Vererbgsl. 86, (1954): 69–100.

    Google Scholar 

  21. Gaul, H., Stand der Mutationsforschung und ihre Bedeutung für die praktische Pflanzenzüchtung. Arbeiten der DLG 44 (1956): 54–71.

    Google Scholar 

  22. Gaul, H., Die Wirkung von Röntgenstrahlen in Verbindung mit CO2, Colchicin und Hitze auf Gerste. Z. f. Pflanzenzücht. 38 (1957): 397–429.

    Google Scholar 

  23. Gaul, H., Zur Frage der ontogenetischen Elimination mutierter Zellen nach Röntgenbestrahlung von Samen. Naturwiss. 21 (1957): 566.

    Google Scholar 

  24. Gaul, H., Die verschiedenen Bezugssysteme der Mutationshäufigkeit bei Pflanzen, angewendet auf Dosis-Effektkurven. Z. f. Pflanzenzücht. 38 (1957): 63–76.

    Google Scholar 

  25. Gaul, H., Die Bestimmung der Frequenz von Punktmutationen bei Pflanzen. Z. f. Naturforschg. 12 (1957): 557–559.

    Google Scholar 

  26. Gaul, H., Entstehung von pflanzlichen Mutationen durch Bestrahlung. Z. Landw. Forschg. 11. Sonderheft (1957): 110–116.

    Google Scholar 

  27. Gaul, H., Über die gegenseitige Unabhängigkeit der Chromosomen- und Punktmutationen. Z. f. Pflanzenzücht. 40 (1958): 151–188.

    Google Scholar 

  28. Gaul, H., Über die Chimärenbildung in Gerstenpflanzen nach Röntgenbestrahlungvon Samen. Flora 147 (1959): in the press.

  29. Gregory, W. C., X-ray breeding of peanuts (Arachis hypogaea L.). Agron. Journ. 47 (1955): 396–399.

    Google Scholar 

  30. Gregory, W. C., Induction of useful mutations in the peanut. Brookhaven Symp. in Biol. 9 (1956): 177–190.

    Google Scholar 

  31. Gregory, W. C., Progress in establishing the effectiveness of radiation in breeding peanuts. Proc. Ninth Oak Ridge Regional Symp. Jan, 14–16, (1957): 36–48.

  32. Gustafsson, Å, Studies on the genetic basis of chlorophyll formation and the mechanism of induced mutating. Hereditas 24 (1938): 33–93.

    Google Scholar 

  33. Gustafsson, Å., The mutation system of the chlorophyll apparatus. Lunds Univ. Årsskrift. N.F. 36 (1940): 1–40.

    Google Scholar 

  34. Gustafsson, Å., Mutations, viability, and population structure. Acta Agr. Scand. 4 (1954): 601–632.

    Google Scholar 

  35. Gustafsson, Å. and N. Nybom, Colchicine, X-rays and the mutation process. Hereditas 35 (1949): 280–284.

    Google Scholar 

  36. Gustafsson, Å., N. Nybom, and U. v. Wettstein, Chlorophyll factors and heterosis in barley. Hereditas 36 (1950): 383–392.

    Google Scholar 

  37. Gustafsson, Å. and D. v. Wettstein, Mutationen und Mutationszüchtung. Handb. der Pflanzenzücht. 1 (1956): 612–699.

    Google Scholar 

  38. Heslot, H. et R. Ferrary, Action génétique comparée des radiations et de quelques mutagènes sur l'orge. Ann. de l'Institut Nat. Agronom., Paris 44 (1958): 2–20.

    Google Scholar 

  39. Hoffmann, W., Ergebnisse der Mutationszüchtung. Vorträge über Pflanzenzücht., Land- und Forstwirtschl. Forschungsrat e.V., Bonn (1951): 36–53.

  40. Hoffmann, W., Aussichten der Mutationszüchtung zur Verbesserung der Qualität des Weizens. Die Qualitätszüchtung von Brotgetreide. Bericht über die Tagung der Arbeitsgemeinschaft für Getreideforschung e.V., Detmold, 9.–10. 2. 1954, 46–54.

  41. Holm, G., Chlorophyll mutations in barley. Acta Agr. Scand. 4 (1954): 457–470.

    Google Scholar 

  42. Kaplan, R. W., Über die Häufigkeiten phänotypisch abweichender Pflanzen in der F1-Generation aus verschieden gequollenem und bestranltem Pollen von Antirrhinum majus. Z. ind. Abst. Vererbgsl. 77 (1939): 568–579.

    Google Scholar 

  43. Kaplan, R. W., Über die Häufigkeit von Faktormutationen durch Röntgenbestrahlung des Pollens von Antirrhinum majus in verschiedenen Quellungszuständen. Naturwiss. 33 (1946): 348–349.

    Google Scholar 

  44. Kaplan, R. W., Chromosomen- und Faktormutationsraten in Gerstenkörnern bei verschiedenartigen Quellungsbehandlungen oder Kälte während oder nach der Röntgenbestrahlung sowie bei Dosisfraktionierung. Z. ind. Abst. Vererbgsl. 83 (1951): 347–382.

    Google Scholar 

  45. Kaplan, R. W., Genetics of microorganisms. Ann. Rev. Micr. 6 (1952): 49–76.

    Google Scholar 

  46. Kaplan, R. W., Gegenwärtige Probleme der Strahlengenetik. Ärztl. Mittlg. 41 (1956): 1–23.

    Google Scholar 

  47. Knapp, E. und R. Kaplan, Beeinflussung der Mutationsauslösung und anderer Wirkungen der Röntgenstrahlen bei Antirrhinum majus durch Veränderung des Quellungszustandes der zu bestrahlenden Samen. Z. ind. Abst. Verebgsl. 80 (1942): 501–550.

    Google Scholar 

  48. Konzak, C. F., Some procedural problems associated with mutation. Studies in crop plants. Work Conference on Radiation Induced Mutations. Biol. Dept. Brookhaven, Nat. Lab. Upton, L.I., New York (1956): 132–151.

    Google Scholar 

  49. Konzak, C. F., Genetic effects of radiation on higher plants. Quarterl. Rev. Biol. 32 (1957): 27–45.

    Google Scholar 

  50. Larter, E. N. and F. C. Elliott, An evaluation of different ionizing radiations for possible use in the genetic transfer of bunt resistance from Agropyron to wheat. Canad. Journ. of Bot. 34 (1956): 817–823.

    Google Scholar 

  51. Levan, A., Aktuelle Probleme der Polyploidiezüchtung. Archiv der Julius Klaus-Stiftung für Verebungsforschung, Sozialanthropologie und Rassenyhgiene 20 (1945): 142–152.

    Google Scholar 

  52. Linnert, G., Untersuchungen über die Cytologie polyploider Pflanzen. I. Chromosoma 3 (1950): 328–356.

    Google Scholar 

  53. Linnert, G., Untersuchungen über die Cytologie polyploider Pflanzen. II. Chromosoma 3 (1950): 399–417.

    Google Scholar 

  54. Mac Key, J., Neutron and X-ray experiments in wheat and a revision of the speltoid problem. Hereditas 40 (1954): 65–180.

    Google Scholar 

  55. Mac Key, J., Mutation breeding in polyploid cereals. Acta Agr. Scand. 4 (1954): 549–557.

    Google Scholar 

  56. Mac Key, J., The biological action of mustards on dormant seeds of barley and wheat. Acta Agr. Scand. 4 (1954): 419–429.

    Google Scholar 

  57. Mac Key, J., Mutation breeding in Europe. Brookhaven Symp. in Biol. 9 (1956): 141–156.

    Google Scholar 

  58. Muller, H. J., Artificial transmutation of the gene. Science 66 (1927): 84–87.

    Google Scholar 

  59. Muller, H. J., On the relation between chromosome changes and gene mutations. Brookhaven Symp. in Biol. 8 (1955): 126–147.

    Google Scholar 

  60. Müntzing, A., Polyploidiezüchtung. Handb. der Pflanzenzücht. 1 (1957): 700–731.

    Google Scholar 

  61. Nilan, R. A., Relation of carbon dioxide, oxygen and low temperature to the injury and cytogenetic effects of X-rays in barley. Genetics 39 (1954): 943–953.

    Google Scholar 

  62. Nordenskiöld, H., An investigation into two tetraploid strains of vetches (Vicia sativa) and their hybrid products. Kungl. Lantbrukshögskolans Ann. 19 (1953): 209–225.

    Google Scholar 

  63. Nybom, N., On the differential action of mutagenic agents. Hereditas 42 (1956): 211–217.

    Google Scholar 

  64. Osborne, T. S., Past, present and potential uses of radiation in southern plant breeding. Proc. Ninth Oak Ridge Regional Symp., Jan. 14–16, (1957): 5–10.

  65. Sapehin, A. A., X-ray mutants in soft wheat. Bull. Appl. Bot. Gen. and Plant Breed., Ser. II. 9 (1936): 3–37.

    Google Scholar 

  66. Scheibe, A. und G. Hülsmann, Mutationsauslösung beim Steinklee (Melilotus albus). Z. f. Pflanzenz:ucht. 39 (1958): 299–324.

    Google Scholar 

  67. Scholz, F., Mutationsversuche an Kulturpflanzen. VII. Untersuchungen über den züchterischen Wert röntgeninduzierter Mutanten verschiedener Merkmalsgruppen bei Sommer- und Wintergerste. Z. f. Pflanzenzücht. 38 (1957): 181–220, 225–274.

    Google Scholar 

  68. Sears, E. R., The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. in Biol. 9 (1956): 1–22.

    Google Scholar 

  69. Sengbusch, R. v., Bitterstoffarme Lupinen. Züchter 2 (1930): 1–2.

    Google Scholar 

  70. Sengbusch, R. v., Süsslupinen und Öllupinen. Landw. Jahrb. 91 (1942): 723–880.

    Google Scholar 

  71. Shapiro S., The Brookhaven radiations mutation program. Atomic Energy Commission Report Number TID-7512, a Conference on Radioactive Isotopes in Agriculture (1956): 141–150.

  72. Shapiro, S., The Brookhaven radiations mutation program. Work Conference on Radiation Induced Mutations. Biol. Dept. Brookhaven Nat. Lab. Upton, L.I. New York (1956): 1–21.

    Google Scholar 

  73. Shapiro, S. and Y. Sagawa, The Brookhaven cooperative program for radiation mutation research. Proc. Ninth Oak Ridge Regional Symp., Jan. 14–16, (1957): 11–35.

  74. Singleton, W. R., The use of radiation in plant breeding. Atomic Energy and Agriculture (1956): 183–194.

  75. Smith, H. H., Radiation in the production of useful mutations. Bot. Rev. 24 (1958): 1–24.

    Google Scholar 

  76. Sparrow, A. H., Cytological changes induced by ionizing radiations and their possible relation to the production of useful mutations in plants. Work Conference on Radiation Induced Mutations. Biol. Dept. Brookhaven Nat. Lab. Upton, L.I., New York (1956): 76–113.

    Google Scholar 

  77. Stadler, I. J., Some genetic effects of X-rays in plants. Journ. of Heredity 21 (1930): 2–19.

    Google Scholar 

  78. Stebbins, G. L., Variation and evolution in plants. Columbia Univ. Press, New York. 1950: 1–643.

    Google Scholar 

  79. Stebbins, G. L., Artificial polyploidy as a tool in plant breeding. Brookhaven Symp. in Biol. 9 (1956): 37–52.

    Google Scholar 

  80. Stubbe, H., Über die Möglichkeiten der experimentellen Erzeugung neuer Pflanzenrassen durch künstliche Auslösung von Mutationen. Züchter 1 (1929): 6–11.

    Google Scholar 

  81. Stubbe, H., Einige Kleinmutationen von Antirrhinum majus L. Züchter 6 (1934): 299–303.

    Google Scholar 

  82. Stubbe, H., Über den Selektionswert von Mutanten. Sitzungsberichte Dt. Akad. d. Wiss. Berlin. Kl. f. Landw. Wiss. 1 (1950): 42 pp.

  83. Zwintzscher, M., Die Auslösung von Mutationen als Methode der Obstzüchtung. I. Die Isolierung von Mutanten in Anlehnung an primäre Veränderungen. Züchter 25 (1955): 290–302.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

(Lecture delivered at the organizational meeting of the section “Mutation and Polyploidy” of EUCARPIA in Lund and Svalöf, July 9–11, 1958).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaul, H. Present aspects of induced mutations in plant breeding. Euphytica 7, 275–289 (1958). https://doi.org/10.1007/BF00025269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00025269

Keywords

Navigation