Skip to main content
Log in

Exchange of phosphorus across the sediment-water interface

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In this article, principles of phosphorus retention and phosphorus release at the sediment-water interface in lakes are reviewed. New results and hypotheses are discussed in relation to older models of phosphorus exchange between sediments and water. The fractional composition of sedimentary phosphorus is discussed as a tool for interpretation of different retention mechanisms. Special emphasis is given to the impact of biological, particularly microbial, processes on phosphorus exchange across the sediment-water interface and to the significance of biologically induced CaCO3 precipitation to phosphorus retention in calcareous lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahl, T., 1979. Natural and human effects on trophic evolution. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13: 269–277.

    Google Scholar 

  • Andersen, J. M., 1982. Effects of nitrate concentration in lake water on phosphate release from the sediment. Wat. Res. 16: 1119–1126.

    Google Scholar 

  • Baccini, P., 1985. Phosphate interactions at the sediment-water interface. In W. Stumm (ed), Chemical processes in lakes. Wiley-Interscience, New York: 189–205.

    Google Scholar 

  • Bannerman, R. T., D. E. Armstrong, R. F. Harris & G. C. Holdren, 1975. Phosphorus uptake and release by Lake Ontario sediments. Ecological Research Series. EPA 660/3–75–006.

    Google Scholar 

  • Barsdate, R. J., T. Fenchel & R. T. Prentki, 1974. Phosphorus cycle of model ecysystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.

    Google Scholar 

  • Boström, B., 1984. Potential mobility of phosphorus in different types of lake sediment. Int. Revue ges. Hydrobiol. 69: 457–474.

    Google Scholar 

  • Boström, B., 1986. The role of Microcystis colonies, its mucilage and associated bacteria, for nutrient fluxes from sediments to lake water — A working hypothesis. In M. Enell, W. Graneli & L.-A. Hansson (eds), 13th Nordic Symposium on Sediments, ISSN 0348–0798: pp. 6–8.

  • Boström, B., 1988. Relations between chemistry, microbial biomass and activity in sediments of a polluted vs a nonpolluted eutrophic lake. Verh. int. Ver. Limnol. 23: 451–459.

    Google Scholar 

  • Boström, B., I. Ahlgren & C. Bell, 1985. Internal loading in a eutrophic lake, reflected in seasonal variations of some sediment parameters. Verh. int. Ver. Limnol. 22: 3335–3339.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.

    Google Scholar 

  • Boström, B., G. Persson & B. Broberg, 1988. Bioavailability of different phosphorus forms in freshwater systems. Hydrobiologia 170: 133–155.

    Google Scholar 

  • Boström, B. & K. Pettersson, 1982. Different patterns of phosphorus release from lake sediments in laboratory experiments. Hydrobiologia 92: 415–429.

    Google Scholar 

  • Carignan, R., 1982. An empirical model to estimate the relative importance of roots in phosphorus uptake by aquatic macrophytes. Can. J. Fish. aquat. Sci. 39: 243–247.

    Google Scholar 

  • Carignan, R. & J. Kalff, 1992. Phosphorus release by submerged macrophytes: Significance to epiphyton and phytoplankton. Limnol. Oceanogr. 27: 419–427.

    Google Scholar 

  • Cmiech, H. A., 1981. Ultrastructural changes in freshwater populations of planktonic Cyanophyceae during cell differentiation and development. Ph. D. thesis. University of Leeds, UK 163 pp.

    Google Scholar 

  • Davis, R. B., D. L. Thurlow & F. E. Brewster, 1975. Effects of burrowing tubificid worms on the exchange of phosphorus between lake sediment and overlying water. Verh. int. Ver. Limnol. 19: 382–394.

    Google Scholar 

  • Dobolyi, E. & S. Herodek, 1980. On the mechanism reducing the phosphate concentration in the water of Lake Balaton. Int. Revue ges. Hydrobiol. 65: 339–343.

    Google Scholar 

  • Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 664–686.

    Google Scholar 

  • Einsele, W., 1938. Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch. Hydrobiol. 33: 361–387.

    Google Scholar 

  • Fenchel, T. & T. H. Blackburn, 1979. Bacteria and mineral cycling. Academic Press, London, 225 pp.

    Google Scholar 

  • Fleischer, S., 1983. Microbial phosphorus release during enhanced glycolysis. Naturwissenschaften 70: 415.

    Google Scholar 

  • Fleischer, S., 1985. Microbial mediation of phosphorus exchange at the sediment-water interface. In. M. Enell, W. Graneli & L.-A. Hansson (eds), 13th Nordic Symposium on Sediments, ISSN 0348–0798: pp 9–16.

  • Fleischer, S., 1986. Aerobic uptake of Fe(III)-precipitated phosphorus by microorganisms. Arch. Hydrobiol. 197: 267–277.

    Google Scholar 

  • Florentz, M., P. Granger & P. Hartemann, 1984. Use of 31P nuclear magnetic resonance and electron microscopy to study phosphorus metabolism of microorganisms from waste-water. Appl. Envir. Microbiol. 47: 519–525.

    Google Scholar 

  • Forsberg, C., 1985. Lake recovery in Sweden. European Water Pollution Control Association, International congress: Lakes pollution and recovery, Rome 1985. Preprints: 272–281.

  • Gächter, R. & A. Mares, 1985. Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes. Limnol. Oceanogr. 30: 364–371.

    Google Scholar 

  • Golterman, H. L., 1975. Physiological Limnology. Elsevier Sci. Publ. Co. Amsterdam. 489 pp.

    Google Scholar 

  • Golterman, H. L., 1984. Sediments, modifying and equilibrating factors in the chemistry of freshwater. Verh. int. Ver. Limnol. 22: 23–59.

    Google Scholar 

  • Golterman, H. L., A. B. Viner & G. F. Lee, 1977. Preface. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr. W. Junk B. V. Publ., The Hague: 1–9.

    Google Scholar 

  • Gunatilaka, A., 1982. Phosphate adsorption kinetics of resuspended sediments in a shallow lake, Neusiedlersee, Austria. Hydrobiologia 91: 293–298.

    Google Scholar 

  • Håkansson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, Berlin, 316 pp.

    Google Scholar 

  • Iwema, A. & A. Meunier, 1985. Influence of nitrate on acetic acid induced biological phosphate removal. Wat. Sci. Tech. 17: 289–294.

    Google Scholar 

  • Jansson, M., 1986. Nitrate as a catalyst for phosphorus mobilization in sediments. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag, NY pp. 387–391.

    Google Scholar 

  • Jansson, M., 1987. Anaerobic dissolution of iron-phosphorus complexes in sediment due to the activity of nitrate reducing bacteria. Microb. Ecol. 14: 81–89.

    Google Scholar 

  • Jensen, T. E., 1968. Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch. Microbiol. 62: 144–152.

    Google Scholar 

  • Jensen, T. E., 1969. Fine structure of developing polyphosphate bodies in a blue-green alga, Plectonema boryanum. Arch. Microbiol. 67: 328–338.

    Google Scholar 

  • Jewell, W. J. & P. L. McCarty, 1968. Aerobic decomposition of algae and nutrient regeneration. Stanford Univ. (USA) Tech. Rep. 91.

    Google Scholar 

  • Jones, B. F. & C. J. Bowser, 1978. The mineralogy and related chemistry of lake sediments. In A. Lerman (ed), Lakes — chemistry, geology, physics. Springer-Verlag, New York, pp. 179–235.

    Google Scholar 

  • Jones, J. G., S. Gardener & B. M. Simon, 1983. Bacterial reduction of ferric iron in a stratified eutrophic lake. J. gen. Microbiol. 129: 131–139.

    Google Scholar 

  • Koschel, R., J. Benndorf, G. Proft & F. Recknagel, 1983. Calcite precipitation as a natural control mechanism of eutrophication. Arch. Hydrobiol. 98: 380–408.

    Google Scholar 

  • Lee, G. F., R. A. Jones & W. Rast, 1980. Availability of phosphorus to phytoplankton and its implications for phosphorus management strategies. In R. C. Loehr, C. S. Martin & W. Rast (eds), Phosphorus management strategies for lakes, Ann Arbor Sci., Ann Arbor, pp 259–308.

    Google Scholar 

  • Lijklema, L., 1977. The role of iron in the exchange of phosphate between water and sediments. In H. L. Golterman (ed), Interactions between sediments and freshwater, Dr W. Junk B. V. Publ., The Hague: 313–317.

    Google Scholar 

  • Logan, T. J., 1982. Mechanisms for release of sediment-bound phosphate to water and the effects of agricultural land management on fluvial transport of particulate and dissolved phosphate. Hydrobiologia 92: 519–530.

    Google Scholar 

  • Marais, G. V. R., R. E. Loewenthal & I. P., Siebritz, 1983. Observations supporting phosphate removal by biological excess uptake — a review. Wat. Sci. Tech. 15: 15–41.

    Google Scholar 

  • Mortimer, C. H., 1941. The exchange of dissolved substances between mud and water in lakes. I. J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes. II. J. Ecol. 30: 147–201.

    Google Scholar 

  • Murphy, T. P., K. J. Hall & I. Yesake, 1983. Coprecipitation of phosphate with calcite in a naturally eutrophic lake. Limnol. Oceanogr. 28: 58–69.

    Google Scholar 

  • Ohle, W., 1958. Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. Vom Wasser 25: 127–149.

    Google Scholar 

  • Osborn, D. W. & H. A. Nicholls, 1978. Optimisation of the activated sludge process for the biological removal of phosphorus. Prog. Wat. Tech. 10: 261–277.

    Google Scholar 

  • Otsuki, A. & R. G. Wetzel, 1972. Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr. 17: 763–767.

    Google Scholar 

  • Pettersson, K., 1986. The fractional composition of sedimentary phosphorus in Swedish lake sediments of different characteristics. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag NY: 149–155.

    Google Scholar 

  • Pettersson, K., B. Boström & O.-S. Jacobsen, 1988. Phosphorus in sediments — speciation and analysis. Hydrobiologia 170: 91–101.

    Google Scholar 

  • Pettersson, K. & V. Istvanovics, 1988. Sediment phosphorus in Lake Balaton — forms and mobility. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 25–41.

    Google Scholar 

  • Petr, T., 1977. Bioturbation and exchange of chemicals in the mud-water interface. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr W. Junk B. V. Publ., The Hague, pp. 216–266.

    Google Scholar 

  • Preston, T., W. D. P. Stewart & C. S. Reynolds, 1980. Bloomforming cyanobacterium Microcystis aeruginosa overwinters on sediment surface. Nature 288: 365–367.

    Google Scholar 

  • Provini, A. & G. Premazzi, 1985. The role of internal loadings. European Water Pollution Control Association. International congress: Lakes pollution and recovery, Rome 1985. Preprints: 71–82.

  • Psenner, R. & R. Pucsko, 1988. Phosphorus fractionation: limits and correlations. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.

    Google Scholar 

  • Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Riber, H. H., 1984. Phosphorus uptake from water by the macrophyte-epiphyte complex in a Danish lake: Relationship to plankton. Verh. int. Ver. Limnol. 22: 790–794.

    Google Scholar 

  • Rodhe, W., 1948. Environmental requirements of freshwater plankton. Symb. Bot. Ups. 10, 149 pp.

    Google Scholar 

  • Ryding, S.-O. & C. Forsberg, 1977. Sediments as a nutrient source in shallow polluted lakes. In H. L. Golterman (ed), Interactions between sediments and freshwater. Dr. W. Junk B. V. Publ., The Hague, pp. 227–234.

    Google Scholar 

  • Shapiro, J., 1967. Induced rapid release and uptake of phosphate by microorganisms. Science 155: 1269–1271.

    Google Scholar 

  • Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of phosphorus inputs to lakes. J. Environ. Qual. 11: 555–563.

    Google Scholar 

  • Sörensen, J., 1982. Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate. Appl. Envir. Microbiol. 43: 319–324.

    Google Scholar 

  • Stauffer, R. E., 1985. Relationships between phosphorus loading and trophic state in calcareous lakes of southeast Wisconsin. Limnol. Oceanogr. 30: 123–145.

    Google Scholar 

  • Stumm, W. & J. O. Leckie, 1971. Phosphate exchange with sediments; its role in the productivity of surface waters. Eidgen. Techn. Hochschulen, Separatum Nr. 406. Dübendorf, Schweiz.

    Google Scholar 

  • Tiren, T. & K. Pettersson, 1985. The influence of nitrate on the phosphorus flux to and from oxygen depleted lake sediments. Hydrobiologia 120: 207–223.

    Google Scholar 

  • Uehlinger, V., 1986. Bacteria and phosphorus regeneration in lakes. An experimental study. Hydrobiologia 135: 197–206.

    Google Scholar 

  • Ulen, B., 1978. Seston and sediment in Lake Norrviken. III. Nutrient release from sediment. Schweiz. Z. Hydrol. 40: 287–305.

    Google Scholar 

  • Vollenweider, R. A., 1986. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus. Organisation for economic cooperation and development (OECD) report DAS/CSI/68.27, Paris, 192 pp.

  • Wentzel, M. C., L. H. Lötter, R. E. Loewenthal & G. v.R. Marais, 1986. Metabolic behaviour of Acinetobacter spp. in enhanced biological phosphorus removal — a biochemical model. Water SA 12: 209–224.

    Google Scholar 

  • Williams, J. D. H., J. -M. Jaquet & R. L. Thomas, 1976. Forms of phosphorus in the surficial sediments of Lake Erie. J. Fish. Res. Board Can. 33: 413–429.

    Google Scholar 

  • Williams, J. D. H. & T. Mayer, 1972. Effects of sediment diagenesis and regeneration of phosphorus with special reference to lakes Eire and Ontario, In H. E. Allen & J. R. Kramer (eds), Nutrients in natural waters. J. Wiley & Sons, NY: 281–315.

    Google Scholar 

  • Young, T. C. & W. G. Comstock, 1986. Direct effects and interactions involving iron and humic acid during formation of colloidal phosphorus. In P. G. Sly (ed) Sediments and water interactions. Springer-Verlag NY: 461–470.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boström, B., Andersen, J.M., Fleischer, S. et al. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170, 229–244 (1988). https://doi.org/10.1007/BF00024907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024907

Key words

Navigation