Hydrobiologia

, Volume 170, Issue 1, pp 19–34 | Cite as

Phosphorus in soil, water and sediment: an overview

  • H. Holtan
  • L. Kamp-Nielsen
  • A. O. Stuanes

Abstract

The geochemistry, availability and abundance of different forms of phosphorus in soil, water and sediments are reviewed. The present knowledge of phosphorus pathways in ecosystems and their regulation is discussed.

In a drainage basin, anthropogenic phosphorus is brought into the system mainly as fertilizers and detergents. Sewer systems and outwash processes transfer the phosphorus from the terrestrial environment to the aquatic part of the ecosystem where an accumulation occurs in the sediments of the watercourse.

A great part of the phosphates in soil is sorbed to soil particles or incorporated into soil organic matter. The release and export of phosphorus from uncultivated soil is a function of the geology and soil composition, but also of the air temperature, precipitation and the hydrological condition, pH etc.

The solubility of phosphates is controlled by either sorption-desorption or precipitation-dissolution reactions depending on the environment in the soil or sediments. In soil and sediments with large amounts of iron and aluminium hydrous oxides, sorption-desorption reactions are largely responsible for determining the level of orthophosphate in the solution at equilibrium.

Algal availability of phosphorus associated with soil-derived materials present in aquatic systems deserves more research. In addition, processes responsible for transport of phosphorus from cropland to aquatic systems and chemical and microbial transformations of phosphorus in lakes and streams deserve more attention.

Key words

Phosphorus mineral soil sediment sorption transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, T. & S. Odén, 1975. Närsaltkällor — en översikt. NORDFORSK, Helsinki, publ. 1975: 1: 99–133 (in Swedish).Google Scholar
  2. Ahl, T. & T. Wiederholm, 1977. Svenska vattenkvalitetskriterier. Eutrofierande ämnen. Statens Naturvårdsverk. Stockholm PM-series 918. 124 pp. (in Swedish).Google Scholar
  3. Alexander, G. R., 1978. The ratiande for a ban on detergent phosphate in the Great Lakes Basin. In Phosphorus in the Environment: its chemistry and biochemistry. A Ciba Foundation Symposium, Elsevier, Amsterdam: 269–284.Google Scholar
  4. Bargh, B. J., 1977. Output of water, suspended sediment and phosphorus and nitrogen forms from a small forested catchment. New Zealand Forestry Science 7: 162–171.Google Scholar
  5. Berge, D., S. Rognerud & M. Johannessen, 1979. Videreutvikling av fosforbelastningsmodellen for store sjiktede innsjøer. NIVA-årbok 1979, Oslo: 39–42 (in Norwegian).Google Scholar
  6. Berkheiser, V. E., J. J. Street, P. S. C. Rao & T. L. Yuan, 1980. Partitioning of inorganic orthophosphate in soil-water systems. CRC Crit. Rev. Envir. Control. 10: 179–224.Google Scholar
  7. Boström, B., M. Jansson & C. Forsberg, 1982. Phosphorus release from sediments. Arch. Hydrobiol. Beih. Ergebn. Limnol. 18: 5–59.Google Scholar
  8. Brakke, D. F., 1977. Rainwater: nutrient additions to a hypereutrophic lake. Hydrobiologia 52: 159–163.Google Scholar
  9. Brink, J. W., 1978. World resources of phosphorus. In Phosphorus in the environment: its chemistry and biochemistry. A Ciba Foundation Symposium. Elsevier, Amsterdam: 23–48.Google Scholar
  10. Brown, E. J., R. F. Harris & J. F. Koonce, 1978. Kinetic of phosphate uptake by aquatic microorganisms: deviations from a simple Michaelis — Menten equation. Limnol. Oceanogr. 23: 26–34.Google Scholar
  11. DePinto, J. U., J. K. Edzwald, M. S. Switzenbaum & T. C. Young, 1980. Phosphorus removal in lower Great Lakes municipal treatment plants. US Envir. Prot. Agency Rep. no. 600/2–80–177. Cincinnati, Ohio.Google Scholar
  12. Dillon, P. J., 1975. The phosphorus budget of Cameron Lake, Ontario: The importance of flushing rate to the degree of eutrophy of lakes. Limnol. Oceanogr. 19: 28–39.Google Scholar
  13. Dillon, P. J. & W. B. Kirchner, 1975. The effects of geology and land use on the export of phosphorus from watersheds. Wat. Res. 9: 135–148.Google Scholar
  14. Dillon, P. J. & F. H. Rigler, 1975. A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish. Res. Bd Can. 32: 1519–1531.Google Scholar
  15. Duffy, P. D., J. D. Schreiber, D. C. McClurkin & L. L. McDowell, 1978. Aqueous — and sediment phase phosphorus yields from five Southern Pine Watersheds. J. Envir. Qual. 7: 45–50.Google Scholar
  16. Einsele, W., 1936. Über die Beziehungen des Eisenkreislaufs zum Phosphatkreislauf im eutrophen See. Arch. Hydrobiol. 29: 644–686.Google Scholar
  17. Enell, M., 1980. The phosphorus economy of a hyperthrophic seepage lake in Scania, south Sweden. Inst. Limnology, Univ. Lund., 190 pp.Google Scholar
  18. Evdokimova, T. J., L. A. Grishina, V. D. Vasilyevskaya, E. M. Samvilova & T. L. Bytriskaya, 1976. Biogeochemical cycles of elements in some natural zones of european USSR. In B. H. Svensson & R. Søderlund (eds), Nitrogen, phosphorus and sulphur-global cycles, — SCOPE Report 7. Ecol. Bull. Stockholm. 22: 135–155.Google Scholar
  19. Gächter, R. & O. J. Furrer, 1972. Der Beitrag der Landwirtschaft zur Eutrophierung der Gewässer in Schweiz. Schweiz. Z. Hydrol. 34: 41–70.Google Scholar
  20. Giles, C. H., 1970. Interpretation and use of sorption isotherms. In Sorption and transport processes in soils. S.C.I. Monograph No. 37: 14–32.Google Scholar
  21. Griffith, E. J. 1973. Environmental phosphorus — An Editorial. In E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental phosphorus handbook: J. Wiley & Sons, NY: 683–695.Google Scholar
  22. Haapala, K., 1977. Luftburen föroreningstilförsel. Vattenstyrelsens observationer 1971–1976. NORDFORSK, Helsinki, publ. 1977: 2: 151–160 (in Swedish).Google Scholar
  23. Harremöes, P., 1977. Betydningen of forurening fra regnafstrømning for valg of urbane aflobssystemer — en oversigt over nordisk litteratur og vurdering af status. Nordforsk, Helsinki, publ. 1977: 2: 293–316 (in Danish).Google Scholar
  24. Hayward, D. O. & B. M. W. Trapnell, 1964. Chemisorption. Adsorption isotherms. Butterworths, London, 323 pp.Google Scholar
  25. Hieltjes, A. H. M. & L. Lijklema, 1980. Fractionation of inorganic phosphates in calcareous sediments. J. Envir. Qual. 9: 405–407.Google Scholar
  26. Jackson, J. A. & D. W. Schindler, 1975. The biogeochemistry of phosphorus in an experimental lake environment: evidence for the formation of humic — metal — phosphate complexes. Verh. int. Ver. Limnol. 19: 21–221.Google Scholar
  27. Jacobsen, O. S., 1976. Exhaustion of mobile phosphorus from danish lake sediments. In N. Edberg & A. Wilander (eds), Biological metabolism in sediments. Statens Naturvårdsverk, Stockholm, PM-series 694: 145–160.Google Scholar
  28. Jansson, M., 1977. Vattenbalans och kemiska budgetberäkningar för Stugsjöen 1971–1975. Koukkelprojektets rapport 5. Inst. of Limnology, Univ. Uppsala: 3–46 (in Swedish).Google Scholar
  29. Jenkins, S. H. & W. H. Lockett, 1943. Loss of phosphorus during sewage purification. Nature, 151: 306–307.Google Scholar
  30. Jones R. A., W. Rast & G. F. Lee, 1979. Relationship between summer mean and maximum chlorophyll a concentrations in lakes. Envir. Sci. Tech. 13: 869–870.Google Scholar
  31. Kamp-Nielsen, L., 1974. Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch. Hydrobiol. 73: 218–237.Google Scholar
  32. Kamp-Nielsen, L., 1983a. A sediment-water exchange model for lakes in the Upper Nile Basin. In: D. M. Dubois (ed.), Progress in Ecological Engineering and Management by Mathematical Modelling. Ed. Cebedoc, Liège: 557–582.Google Scholar
  33. Larsen, S., 1967. Soil phosphorus. Adv. Agron. 19: 151–210.Google Scholar
  34. Lean, D. R. S., 1973a. Movements of phosphorus between its biologically important forms in lakewater. J. Fish. Res. Bd Can. 30: 1525–1536.Google Scholar
  35. Lean, D. R. S., 1973b. Phosphorus dynamics in lake water. Science 179: 678–680.Google Scholar
  36. McClellan, G. H. & T. P. Hignett, 1978. Some economic and technical factors affecting use of phosphate raw materials. In Phosphorus in the Environment; its chemistry and biochemistry. A Ciba Foundation Symposium. Elsevier, Amsterdam: 49–64.Google Scholar
  37. McKelvey, V. E., 1973. Abundance and Distribution of Phosphorus in the Lithosphere. In E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook: J. Wiley & Sons NY: 13–31.Google Scholar
  38. Ministry of the Environment (Norway), 1985. Om tiltak mot vann- og luftforurensninger og om kommunalt avfall. St. med. nr. 51 (1984–85), Oslo: 93 (in Norwegian).Google Scholar
  39. Mortimer, C. H., 1941. The exchange of dissolved substances between mud an water in lakes. I. J. Ecol. 29: 280–329.Google Scholar
  40. Mortimer, C. H., 1942. The exchange of dissolved substances between mud and water in lakes II. J. Ecol. 30: 147–201.Google Scholar
  41. Murphy, T. J. & P. V. Doskey, 1976. Input of phosphorus from precipitation to Lake Michigan. J. Great Lakes Res. 2: 60–70.Google Scholar
  42. Norges offentlige Utredninger, 1982. Industrimineraler. NOU Oslo 1982: 24, 134 pp. (in Norwegian).Google Scholar
  43. Olsen, S. R. & F. E. Khasawneh, 1980. Use and limitations of physical-chemical criteria for assessing the status of phosphorus in soils. In F. E. Khasawneh, E. C. Sample & E. J. Kamprath (eds.), The role of phosphorus in agriculture. Am. Soc. Agronomy, Crop Sci. Soc. Am. Soil Sci. Soc. Am. Madison, Wisconsin: 361–410.Google Scholar
  44. Psenner, R., 1984. Phosphorus release patterns from sediments of a meromictic mesotrophic lake (Piburger See, Austria). Verh. int. Ver. Limnol. 22: 219–229.Google Scholar
  45. Rigler, F. H., 1956. A tracer study of the phosphorus cycle in lake water. Ecology 37: 550–562.Google Scholar
  46. Rigler, F. H., 1973. A Dynamic View of the Phosphorus Cycle in Lakes. In E. J. Griffith, A. Beeton, J. M. Spencer & D. T. Mitchell (eds), Environmental Phosphorus Handbook. J. Wiley & Sons NY: 539–568.Google Scholar
  47. Ryden, J. C. & P. F. Pratt, 1980. Phosphorus removal from wastewater applied to land. Hilgardia 48: 1–36.Google Scholar
  48. Sample, E. C., R. J. Soper & G. J. Racz, 1980. Reactions of phosphate fertilizers in soils. In F. E. Khasawneh, E. C. Sample & E. J. Kamprath (eds.). The role of phosphorus i agriculture. Am. Soc. Agronomy, Crop Sci. Soc. Am., Soil Sci. Soc. Am., Madison, Wisconsin: 263–310.Google Scholar
  49. Schindler, D. W. & J. E. Nighswander, 1970. Nutrient supply and primary production in Clear Lake, eastern Ontario. J. Fish. Res. Bd Can. 27: 2009–2036.Google Scholar
  50. Schindler, D. W., R. W. Newbury, K. G. Beaty & P. Campbell, 1976. Natural water and chemical budgets for a small precambrian lake basin in central Canada. J. Fish. Res. Bd Can. 33: 2526–2543.Google Scholar
  51. Schaffner, W. R. & R. T. Oglesby, 1978. Phosphorus loadings to lakes and some of their responses. Part 1. Limnol. Oceanogr. 23: 120–134.Google Scholar
  52. Sonzogni, W. C. & G. F. Lee, 1974. Nutrient Sources for Lake Mendota — 1972. Trans. Wis. Acad. Sci., Arts, Lett. 62: 133–164.Google Scholar
  53. Sonzogni, W. C., S. C. Chapra, D. E. Armstrong & T. J. Logan, 1982. Bioavailability of Phosphorus. Inputs to Lakes. J. Envir. Qual. 11: 555–563.Google Scholar
  54. Stumm, W. & J. J. Morgan, 1970. Aquatic chemistry. Wiley-Inter-science, NY, 583 pp.Google Scholar
  55. Stuanes, A. O., 1982. Phosphorus sorption by soil. A review. In A. S. Eikum & R. W. Seabloom (eds), Alternative wastewater treatment; Low cost small systems, research and development. D. Reidel Publishing Company, Dordrecht: 145–152.Google Scholar
  56. Syers, J. K., R. F. Harris & D. E. Armstrong, 1973. Phosphate chemistry in lake sediments. J. Envir. Qual. 2: 1–14.Google Scholar
  57. Wetzel, R. G., 1975. Limnology. W. B. Saunders, Philadelphia, 743 pp.Google Scholar
  58. Wild, A., 1950. The retention of phosphate by soil: A review. J. Soil. Sci. 1: 221–238.Google Scholar
  59. Wollenweider, R. A., 1975. Input — output models with special reference to the phosphorus loading concept in limnology. Schweiz. Z. Hydrol. 37: 53–84.Google Scholar
  60. Wollenweider, R. A. & J. J. Kerekes, 1981. Background and summary results of the OECD Cooperative program on eutrophication. In Restoration of lakes and inland waters. EPA-440/5–81–010. USEPA. Washington. D.C.: 26–35.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • H. Holtan
    • 1
  • L. Kamp-Nielsen
    • 2
  • A. O. Stuanes
    • 3
  1. 1.Norwegian Institute for Water ResearchOslo 3Norway
  2. 2.University of CopenhagenHillerødDenmark
  3. 3.Norwegian Forest Research InstituteÅs-NLHNorway

Personalised recommendations