Skip to main content
Log in

In situ observation of suspended solid aggregates in rivers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Suspended solids are a major pathway of the biogeochemical fate of many contaminants in aquatic systems. Aggregation processes of particles are poorly reported in rivers but they are likely to exist at low flow, mostly because of sticky polysaccharides produced by living organisms. These processes affect suspended particle transport by changing particle sizes and densities and may also limit exchanges of matter between solid and dissolved phases. The main difficulty in floc studies is aggregate fragility, which requires the use of specialized in situ techniques to analyze aggregated suspended solids.

We describe two in situ methods for observing suspended particles which do not need heavy field equipment. The first one is based on the filtration of a thin water layer in the natural flow through a membrane which can subsequently be observed by microscope. The second one is based on in situ video snapshots of suspended solids by an endoscope. The video camera linked to the microscope or the endoscope supplies images which are automatically analyzed by image processing to give size distributions.

Procedures and validation for both methods are described and results compared with a standard method. The filtration method has been used to trace suspended solids from sewer overflows in the Seine River downstream of Paris. Freshwater flocs are described and a discussion of the fate of aggregates is presented.

Résumé

Les matières en suspension sont déterminantes dans le cycle biogéochimique de nombreux polluants des systèmes aquatiques. Les phénomènes d'agrégation des particules sont encore mal connus en rivière, mais peuvent se produire dans les fleuves urbains du fait de la lenteur des écoulements et vraisemblablement de l'importance des processus bactériens. Ces phénomènes influencent directement le transport des suspensions en modifiant les tailles et les densités des particules. Ils peuvent également limiter les échanges chimiques entre phase dissoute et particulaire.

Le problème de la fragilité des flocs et la complexité des équipements habituellement utilisés in situ nous ont conduit à développer deux méthodes d'observation non destructives des flocs. La première consiste à filtrer une mince lame d'eau directement dans l'écoulement naturel puis à observer les suspensions au microscope. La deuxième méthode est l'observation directe des suspensions dans l'écoulement, grâce à un endoscope. Une caméra vidéo reliée au microscope ou à l'endoscope fournit des images que l'on traite automatiquement (dénombrement et mesure des particules) pour obtenir la granulométrie des agrégats naturels.

Nous comparons les résultats des deux méthodes à ceux d'une méthode de référence, puis nous comparons les deux méthodes entre elles. La filtration in situ a été utilisée en Seine à l'aval de gros rejets de temps de pluie de l'agglomération parisienne pour étudier les matières en suspension issues des rejets. La caractérisation des flocs de Seine permet de discuter de leur devenir dans le fleuve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bale, A. J. & A. W. Morris, 1987. in situ measurements of particle size in estuarine waters. Estuarine Coastal and Shelf Science 24: 253–263.

    Google Scholar 

  • Brun-Cottan, J. C., 1986. Vertical transport of particles within the ocean. In P. Buat-Menard (ed), The Role of Air-Sea Exchange in Geochemical Cycling. D. Reidel Publishing Company: 83–111.

  • Bussy, A. L. & A. Estebe, 1993. Impact des surverses d'orage sur la qualité des eaux de la Seine dans l'agglomération parisienne. Rapport de synthèse 1989–1992, Vol IV, Piren-Seine, Paris, 160 pp.

    Google Scholar 

  • Chebbo, G. & A. Bachoc, 1992. Characterization of suspended solids in urban wet weather discharges. Water Science Technology 25: 171–179.

    Google Scholar 

  • Coster, M. & J. L. Chermant, 1989. Précis d'analyse d'images. Presses du CNRS, Paris, 560 pp.

    Google Scholar 

  • Droppo, I. G. & E. D. Ongley, 1992. The state of suspended sediment in the freshwater fluvial environment: a method of analysis. Wat. Res. 26: 65–72.

    Google Scholar 

  • Eisma, D., 1986. Flocculation and de-flocculation of suspended matter in estuaries. Neth. J. Sea Res. 20: 183–199.

    Google Scholar 

  • Eisma, D., 1993. Intercalibration Program in the Elbe River mouth, June 1993, (in prep).

  • Figuères, G., J. M. Martin & M. Meybeck, 1978. Iron behavior in the Zaire estuary. Neth. J. Sea Res. 12: 329–337.

    Google Scholar 

  • Fortier, 1967. Mécanique des suspensions. Masson, Paris, 176 pp.

    Google Scholar 

  • Fox, L. E., 1983. The removal of dissoved humic acids during estuarine mixing. Estuarine Coastal and Shelf Science 16: 431–440.

    Google Scholar 

  • Gibbs, R. J., 1982. Floc breakage by pumps. J. Sed. Petrol. 51: 670–672.

    Google Scholar 

  • Gibbs, R. J. & L. N. Konwar, 1982. Effects of pipeting on mineral flocs. Envir. Sci. Technol. 16: 119–121.

    Google Scholar 

  • Gibbs, R. J. & L. N. Konwar, 1983. Sampling of mineral flocs using Nisking bottles. Envir. Sci. Technol. 17: 374–375.

    Google Scholar 

  • Hunter, K. A. & M. W. Leonard, 1988. Colloid stability and aggregation in estuaries. 1. Aggregation kinetics of riverine dissolved iron after mixing with sea water. Geochimica et Cosmochimica Acta 52: 1123–1130.

    Google Scholar 

  • Jiang, Q. & B. E. Logan, 1991. Fractal dimensions of aggregates determined from steady-state size distributions. Envir. Sci. Technol. 25: 2031–2038.

    Google Scholar 

  • Landau, L. D. & E. M. Lifshitz, 1987. Fluid Mechanics. Pergamon Press, Oxford, 539 pp.

    Google Scholar 

  • Lau, Y. L. & B. G. Krishnappan, 1992. Size distribution and settling velocity of cohesive sediments during settling. Journal of hydraulic Research 30: 673–684.

    Google Scholar 

  • Li, D. & J. Ganczarczyk, 1991. Size distribution of activated sludge flocs. J. Wat. Pollut. Cont. Fed. 63: 806–814.

    Google Scholar 

  • Morel, M. M. & P. M. Gschwend, 1987. The role of colloids in the partitioning of solutes in natural waters. In W. Stumm (ed), Aquatic Surface Chemistry, Chemical Processes at the Particle-Water interface, Wiley-Interscience, New York: 405–422.

    Google Scholar 

  • Perret, D., G. G. Leppard, M. Muller, N. Belzile, R. De Vitre & J. Buffle, 1991. Electron microscopy of aquatic colloids: non-perturbing preparation of specimens in the field. Wat. Res. 25: 1333–1343.

    Google Scholar 

  • Rodi, W., 1980. Turbulence models and their application in hydraulics. State-of the art paper. IAHR: 104 pp.

  • Tambo, N. & Y. Watanabe, 1979. Physical characteristics of flocs. 1. The floc density function and aluminium floc. Wat. Res. 13: 409–419.

    Google Scholar 

  • Van Leussen W., 1988. Aggregation of particles, settling velocity of mud flocs, a review. In J. Dronkers & W. Van Leussen (eds), Physical Processes in Estuaries, Springer-Verlag, Berlin Heidelberg: 347–403.

    Google Scholar 

  • Wu, S. C. & P. M. Gschend, 1986. Sorption kinetics of hydrophobic organic compounds to natural sediment and solids. Envir. Sci. Technol. 20: 717–725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maldiney, M.A., Mouchel, J.M. In situ observation of suspended solid aggregates in rivers. Hydrobiologia 300, 365–373 (1995). https://doi.org/10.1007/BF00024477

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024477

Keywords

Navigation