Skip to main content
Log in

Space and time distribution of zooplankton in a Mediterranean lagoon (Etang de Berre)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the Berre lagoon, a large brackish and swallow area near Marseille, the environmental factors (temperature, salinity, oxygen, suspended particulate matter and chlorophyll) generally display strong space and time variations. The rotifer Brachionus plicatilis and the copepod Acartia tonsa constitute the bulk of the zooplankton population during all the year. Their space and time distributions were studied in 23 stations distributed all over the lagoon, during four seasonal cruises (February, June, October, November), at surface and bottom layers. There is no marked difference in the horizontal and vertical distribution of the two species, (except in November when rotifers were prevailing in surface and copepods at depth) and in their time occurence. When the four series of data are pooled, correlation analysis show that A.tonsa is positively correlated with temperature, salinity and seston and negatively to oxygen and chlorophyll. B. plicatilis is positively correlated with temperature and seston, but also with chlorophyll, while salinity has a negative effect. The specific eggs number of both species is chlorophyll dependent. Considering seasonal cruises separately, some differences appear in the sense or the significance of these different correlations. The respective distribution of the two species is only partly dependent on the variation of the environmental factors: most of the variance remains unexplained, as indicated by the result of a stepwise multiple regression analysis using the most significant factors (temperature, salinity and oxygen explain 33 to 42% of the variance in Acartia, while temperature and salinity explain 27 to 28% of the variance in Brachionus). Thus, internal behavioral factors could also play a role in the distribution of organisms, particularly in some cases of aggregations of organisms observed during this study. As the two species occupied the same space habitat most of the year, they are potentially in competition for food. A way to optimize the food utilization could be the time separation of their feeding activity, nocturnal in Acartia and diurnal in Brachionus. Another way could be selective feeding upon food particles depending on their size (Brachionus being able to use finer particles than Acartia) or their quality (Brachionus being more herbivorous than Acartia) as demonstrated in some grazing experiments carried out in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanieu, M. & G. Lasserre, 1982. Organization et évolution des populations lagunaires. Actes du Symposium International sur les lagunes côtières, SCOR/IABO/UNESCO, Bordeaux, 8–14 september 1981, Oceanologica Acta, N° Sp: 201–213.

  • Arfi, R., 1989. Annual cycles and budget of nutrients in Berre Lagoon (Mediterranean Sea, France). Int. Revue ges. Hydrobiol. 74: 29–49.

    Google Scholar 

  • Arfi, R., R. Gaudy, P. Kerambrun & M. Pagano, 1990. Plasticité écologique des populations planctoniques à l'interface terre-mer- Conditions naturelles, effects anthropiques in R. E. Quellenec, E. Ercolani & G. Michou (eds), Littoral 90, Eurocast c/o BRGM, Marseille, France: 356–360.

    Google Scholar 

  • Arndt, H., 1988. Dynamics and production of a natural population of Brachionus plicatilis (Rotatoria, Monogononta) in a eutrophicated inner coastal water of the Baltic. Kieler Meeresforsch., Sonderh. 6: 147–153.

    Google Scholar 

  • Arndt, H. & R. Heerkloss, 1989. Diurnal variations in feeding and assimilation rates of planktonic rotifers and its possible ecological significance. Int.Revue ges. Hydrobiol. 74: 261–272.

    Google Scholar 

  • Blanchot, J. & R. Pourriot, 1982. Influence de trois facteurs de l'environnement, lumière, température et salinité, sur l'éclosion des oeufs de durée d'un clone de Brachionus plicatilis (O. F. Müller) Rotifère. C. r. Acad. Sci., Paris 295, ser. III: 243–246.

    Google Scholar 

  • Cahoon, L. B., 1981. Reproductive aspects of Acartia tonsa to variations in food ration and quality. Deep Sea Res. 28A: 1215–1221.

    Google Scholar 

  • Chotiyaputta, C. & K. Hirayama, 1978. Food selectivity of the rotifer Brachionus plicatilis feeding on phytoplankton. Mar. Biol. 45: 105–111.

    Google Scholar 

  • Castel, J. & Cl. Courtiès, 1982. Composition and differential distribution of zooplankton in Arcachon Bay. J. Plankton Res. 4: 417–433.

    Google Scholar 

  • Dagg, M., 1977. Some effects of patchy food environments on copepods. Limnol. Oceanogr. 22: 99–107.

    Google Scholar 

  • Durbin, G. A., G. E. Durbin & E. Wlodarczyk, 1990. Diel feeding behavior in the marine copepod Acartia tonsa in relation to food availability. Mar. Ecol. Prog. Ser. 68: 23–45.

    Google Scholar 

  • Gaudy, R., 1984. Structure et fonctionnement de l'écosystème zooplanctonique de l'interface terre-mer en Méditerranée Occidentale. Oceanis 10: 367–383.

    Google Scholar 

  • Gaudy, R., 1989. The role of zooplankton in the nitrogen cycle of a Mediterranean brackish lagoon. Scient. mar. 52: 609–616.

    Google Scholar 

  • Gaudy, R. & M. Vinas, 1985. Première signalisation en Méditerranée du copépode pélagique Acartia tonsa Rapp. Comm. int. Mer Médit. 219: 227–229.

    Google Scholar 

  • Gonzales, J. G., 1974. Critical thermal maxima and upper lethal temperature of the calanoid copepods Acartia tonsa and A. clausi. Mar. Biol. 27: 219–223.

    Google Scholar 

  • Guelorget, O. & J. P. Perthuisot, 1983. Le domaine paralique: expression géologique, biologique et économique du confinement. Presses Ecole Normale, S4, Paris, 136pp.

    Google Scholar 

  • Hirayama, K. & H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker's yeast for population growth of the rotifer Brachionus plicatilis. Bull. Jap. Soc. Sci. Fish. 49: 505–510.

    Google Scholar 

  • Jeffries, H. P., 1962. Succession of two Acartia species in estuaries. Limnol. Oceanogr. 7: 354–364.

    Google Scholar 

  • Konnur, R. & J. Azariah, 1987. Distribution of rotifer brines in the estuarine region of river Adyar with special reference to suspended particulate matter. J. mar. biol. Ass. India, 29: 286–290.

    Google Scholar 

  • Lance, J., 1963. The salinity tolerance of some estuarine planktonic copepods. Limnol. Oceanogr. 8: 440–449.

    Google Scholar 

  • Lee, W. Y. & B. J. McAlice, 1979. Seasonal succession and breeding cycles of three species of Acartia (Copepoda: Calanoida) in a Maine estuary. Estuaries 2: 228–235.

    Google Scholar 

  • Omori, M. & W. M. Hammer, 1982. Patchy distribution of zooplankton: behavior, population assessment and sampling problems. Mar. Biol. 72: 193–200.

    Google Scholar 

  • Pascual, E. & M. Yufera, 1983. Crecimiento en cultivo de una cepa de Brachionus plicatilis O. F. Muller en funcion de la temperatura y la salinidad. Inv. Pesq. 47: 151–159.

    Google Scholar 

  • Patriti, G., 1992. Les migrations nychthémérales du copépode Acartia tonsa Dana 1949. C.r.Acad. Sci. Paris,t314 Ser. III: 75–78.

    Google Scholar 

  • Pourriot, A., 1977. Food and feeding habits of rotifer. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 243–260.

    Google Scholar 

  • Robertson, J. R., 1983. Predation by estuarine zooplankton on tintinnid ciliates. Estuar. coast. Shelf Sci. 16: 27–36.

    Google Scholar 

  • Roman, M. R., 1984. Utilization of detritus by copepod Acartia tonsa. Limnol. Oceanogr. 24: 949–959.

    Google Scholar 

  • Rothhaupt, K. O., 1990. Change of the functional responses of the rotifers Brachionus rubens and B. calyciflorus with particle size. Limnol. Oceanogr. 35: 24–32.

    Google Scholar 

  • Stearns, D. E. & R. B. Forward Jr., 1984. Copepod photobehavior in a simulated natural light environment and its relation to noctural vertical migration. Mar. Biol. 82: 91–100.

    Google Scholar 

  • Stottrup, J. G. & J. Jensen, 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. exp. mar. Biol. Ecol. 141: 97–105.

    Google Scholar 

  • Vargo, S. & A. N. Sastry, 1977. Interspecific differences in tolerance of Eurytemora affinis and Acartia tonsa from an estuarine anoxic basin to low dissolved oxygen and hydrogen sulfide. In D. S. McMusky & A. J. Berry (eds), Physiology and behaviour of marine organisms, Pergamon Press, Oxford: 219–226.

    Google Scholar 

  • White, J. R. & M. R. Roman, 1992. Egg production by the calanoid copepod Acartia tonsa in the mesohaline Cheseapeake Bay: the importance of food resources and temperature. Mar. Ecol. Prog. Ser. 86: 236.

    Google Scholar 

  • Woodmansee, R. A., 1958. The seasonal distribution of the zooplankton of Chicken Bay, Florida. Ecology 39: 247–262.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudy, R., Verriopoulos, G. & Cervetto, G. Space and time distribution of zooplankton in a Mediterranean lagoon (Etang de Berre). Hydrobiologia 300, 219–236 (1995). https://doi.org/10.1007/BF00024463

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024463

Key words

Navigation