Skip to main content
Log in

Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression

  • Research Articles
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

From a mid-maturation seed cDNA library we have isolated cDNA clones encoding two Triticum aestivum puroindolines. Puroindoline-a and puroindoline-b, which are 55% similar, are basic, cystine-rich and tryptophan-rich proteins. Puroindolines are synthezised as preproproteins which include N- and C-terminal propeptides which could be involved in their vacuolar localization. The mature proteins have a molecular mass of 13 kDa and a calculated isoelectric point greater than 10. A notable feature of the primary structure of puroindolines is the presence of a tryptophan-rich domain which also contains basic residues. A similar tryptophan-rich domain was found within an oat seed protein and a mammalian antimicrobial peptide. The ten cysteine residues of puroindolines are organized in a cysteine skeleton which shows similarity to the cysteine skeleton of other wheat seed cystine-rich proteins. Northern blot analysis showed that puroindoline genes are specifically expressed in T. aestivum developing seeds. No puroindoline transcripts as well as no related genes were detected in Triticum durum. The identity of puroindolines to wheat starch-granule associated proteins is discussed as well as the potential role of puroindolines in the plant defence mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arondel V, Kader JC: Lipid transfer in plants. Experientia 46: 579–585 (1990).

    PubMed  Google Scholar 

  2. Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV: A carboxy-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2: 1145–1155 (1990).

    Article  PubMed  Google Scholar 

  3. Blochet JE, Kaboulou A, Compoint JP, Marion D: Amphiphilic proteins from wheat flour: specific extraction, structure and lipid binding properties. In: Bushuk W, Thachuk R (eds), Gluten Proteins, pp. 314–325 (1991).

  4. Blochet JE, Chevalier C, Forest E, Pebay-Peyroula E, Gautier MF, Joudrier P, Pézolet M, Marion D: Complete amino acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X114 phase partitioning. FEBS Lett 329: 336–340 (1993).

    Article  PubMed  Google Scholar 

  5. Buonocore V, DeBiasi M, Giardina P, Poerio E, Silano V: Purification and properties of an α-amylase tetrameric inhibitor from wheat kernel. Biochim Biophys Acta 831: 40–48 (1985).

    Google Scholar 

  6. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal Biochem 162: 156–159 (1987).

    Article  PubMed  Google Scholar 

  7. Désormeaux A, Blochet JE, Pézolet M, Marion D: Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the α-helix structure. Biochim Biophys Acta 1121: 137–152 (1992).

    PubMed  Google Scholar 

  8. Dieryck W: Etude des gènes codant pour les protéines de transfert de lipides de 7 et 9 kDa de blé dur. Production de la protéine de transfert de lipides de 9 kDa dans E. coli. Thèse de Doctorat de l'Université Blaise Pascal, Clermont-Ferrand, 130 pp. (1993).

  9. Dieryck W, Gautier MF, Lullien V, Joudrier P: Nucleotide sequence of a cDNA encoding a lipid transfer protein from wheat (Triticum durum Desf.) Plant Mol Biol 19: 707–709 (1992).

    PubMed  Google Scholar 

  10. Fabijanski S, Chang SC, Dukiandjiev S, Bahramian MB, Ferrara P, Altosaar I: The nucleotide sequence of a cDNA for a major prolamin (avenin) in oat (Avena sativa L. cultivar Hinoat) which reveals homology with oat globulin. Biochem Physiol Pflanzen 183: 143–152 (1988).

    Google Scholar 

  11. Garcia-Olmedo F, Salcedo G, Sanchez-Monge R, Gomez L, Royo J, Carbonero P: Plant proteinaceous inhibitors of proteinases and α-amylases. Oxford Surv Plant Mol Cell Biol 4: 275–334 (1987).

    Google Scholar 

  12. Gatineau E, Toma F, Montenay-Garestier T, Takechi M, Fromageot P, Ménez A: A role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from naja nigricollis venom. Biochemistry 26: 8046–8055 (1987).

    PubMed  Google Scholar 

  13. Gautier MF, Alary R, Joudrier P: Cloning and characterization of a cDNA encoding the wheat (Triticum durum Desf.) CM16 protein. Plant Mol Biol 14: 313–322 (1990).

    PubMed  Google Scholar 

  14. Gautier MF, Alary R, Lullien V, Joudrier P: Nucleotide sequence of a cDNA encoding the wheat (Triticum durum Desf.) CM2 protein. Plant Mol Biol 16: 333–334 (1991).

    PubMed  Google Scholar 

  15. Gerard GF, Miller K: Comparison of glyoxal and form-aldehyde gels for sizing rRNAs. Focus (Gibco BRL) 8: 5–6 (1986).

    Google Scholar 

  16. Greenwell P: Wheat starch granule proteins and their technological significance. In: Murray I (ed) Proceedings of the 37th Australian cereal chemistry conference, pp. 100–103. Cereal Chemistry Division Royal Australian Chemical Institute, Melbourne (1987).

    Google Scholar 

  17. Greenwell P: Biochemical studies of endosperm texture in wheat. 9th International Cereal and Bread Congress, Paris, 1–5 June, Abstract E4. Ind Céréales 77: 20 (1992).

  18. Greenwell P, Schofield JD: A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63: 379–380 (1986).

    Google Scholar 

  19. Greenwell P, Schofield JD: The chemical basis of grain hardness and softness. In: Wheat End-Use Properties. Proceedings from ICC Symposium 89. University of Helsinki and Lahti Research Training Center, Helsinki, pp. 59–72 (1989).

    Google Scholar 

  20. Grosset J, Marty I, Chartier Y, Meyer Y: mRNAs newly synthesized by tobacco mesophyll protoplasts are wound-inducible. Plant Mol Biol 15: 485–496 (1990).

    PubMed  Google Scholar 

  21. Gutierrez C, Sanchez-Monge R, Gomez L, Ruiz-Tapiador M, Castanera P, Salcedo G: α-amylase activities of agricultural insect pests are specifically affected by different inhibitor preparation from wheat and barley endosperm. Plant Sci 72: 37–44 (1990).

    Article  Google Scholar 

  22. Holwerda BC, Galvin NJ, Baranski TJ, Rogers JC: In vitro processing of aleurain, a barley vacuolar thiol protease. Plant Cell 2: 1091–1106 (1990).

    Article  PubMed  Google Scholar 

  23. Jolly CJ, Rahman S, Kortt AA, Higgins TJV: Characterization of the wheat Mr 15 000 ‘grain softness protein’ and analysis of the relationship between its accumulation in the whole seed and grain softness. Theor Appl Genet 86: 589–597 (1993).

    Google Scholar 

  24. Joshi CP: An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl Acids Res 15: 6643–6653 (1987).

    PubMed  Google Scholar 

  25. Kashlan N, Richardson M: The complete amino acid sequence of a major wheat protein inhibitor of α-amylase. Phytochemistry 20: 1781–1784 (1981).

    Article  Google Scholar 

  26. Kornfeld S, Mellman I: The biogenesis of lysosomes. Annu Rev Cell Biol 5: 483–525 (1989).

    PubMed  Google Scholar 

  27. Kroczek R, Siebert E: Optimization of northern analysis by vacuum-blotting, RNA transfer visualisation and ultraviolet fixation. Anal Biochem 184: 90–95 (1990).

    PubMed  Google Scholar 

  28. Le Guernevé C: Propriétés physico-chimiques des lipides polaires en relation avec les caractéristiques des pâtes boulangères. Mise en évidence des interactions entre une protéine de blé et les lipides polaires. Thèse de l'Université de Nantes, 159 pp. (1992).

  29. Lullien V, Alary R, Joudrier P, Gautier MF: Characterization of cDNA clone encoding the Triticum aestivum L. CM16 protein: homology with the Triticum durum Desf. sequence. Plant Mol Biol 16: 373–374 (1991).

    PubMed  Google Scholar 

  30. Lullien V, Alary R, Guirao A, Joudrier P, Gautier MF: Isolation and nucleotide sequence of a cDNA clone encoding the bread wheat (Triticum aestivum L.) CM17 protein. Plant Mol Biol 17: 1081–1082 (1991).

    PubMed  Google Scholar 

  31. Lundgard R, Svensson B: The four major forms of barley β-amylase. Purification, characterization and structural relationship. Carlsberg Res Commun 52: 313–326 (1987).

    Google Scholar 

  32. Maeda K, Kakabayashi S, Matsubara H: Complete amino acid sequence of an α-amylase inhibitor in wheat kernel (0.19 inhibitor). Biochim Biophys Acta 828: 213–221 (1985).

    PubMed  Google Scholar 

  33. Matsuoka K, Nakamura K: Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc Natl Acad Sci USA 88: 834–838 (1991).

    PubMed  Google Scholar 

  34. Messing J, Geraghty D, Heidecker G, Hu NT, Kridl J, Rubenstein I: Plant gene structure. In: Kosuge T, Meredith CP, Hollaender A (eds), Genetic Engineering of plants, pp. 211–227. Plenum Press, New York (1983).

    Google Scholar 

  35. Monnet FP: Caractérisation d'une protéine de fixation de lipides de blé dur, purification, séquençage, ADN complémentaire; relations aux protéines végétales de transfert de lipides et aux inhibiteurs d'α-amylase/trypsine des céréales. Thèse de l'Université de Montpellier, 121 pp. (1990).

  36. Mullis KB, Faloona FA: Specific synthesis of DNA in-vitro via a polymerase catalysed chain reaction. Meth Enzymol 155: 335–350 (1987).

    PubMed  Google Scholar 

  37. Neuhaus JM, Sticher L, Meins F, Boller T: A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc Natl Acad Sci USA 88: 10362–10366 (1991).

    PubMed  Google Scholar 

  38. Rahman S, Jolly CJ, Higgins TJ: The chemistry of wheat-grain hardness. Chem Australia, September: 397 (1991).

  39. Rasmussen SK, Welinder KG, Hejgaard J: cDNA cloning, characterization and expression of an endosperm-specific barley peroxidase. Plant Mol Biol 16: 317–327 (1991).

    PubMed  Google Scholar 

  40. Rogers SO, Bendich AJ: Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5: 69–76 (1985).

    Google Scholar 

  41. Russell PL, Gough BM, Greenwell P, Fowler A, Munro HS: A study by ESCA of the surface of native and chlorine-treated wheat starch granules. J Cereal Sci 5: 83–100 (1987).

    Google Scholar 

  42. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467 (1977).

    PubMed  Google Scholar 

  43. Schiffer M, Chang CH, Stevens FJ: The functions of tryptophan residues in membrane proteins. Protein Engin 5: 213–214 (1992).

    Google Scholar 

  44. Schofield JD, Greenwell P: Wheat starch granule proteins and their technological significance. In: Morton ID (ed), Cereals in a European Context, pp. 407–420. Ellis Horwood, Chichester (1987).

    Google Scholar 

  45. Selsted ME, Levy JN, VanAbel RJ, Cullor JS, Bontems RJ, Barany G: Purification, characterization, synthesis and cDNA cloning of indolicidin: A tryptophan-rich microbicidal tridecapeptide from neutrophils. In: Smith JA, Rivier JE (eds), Peptides: Chemistry and Biology, pp. 905–907. ESCOM Science Publishers, Leiden, Netherlands (1991).

    Google Scholar 

  46. Shewry PR, Field JM, Kirkman MA, Faulks AJ, Miflin BJ: The extraction, solubility, and characterization of two groups of barley storage polypeptides. J Exp Bot 31: 393–407 (1980).

    Google Scholar 

  47. Silano V, Furia M, Gianfreda L, Macri A, Palescandolo R, Rab A, Scardi V, Stella E, Valfre F: Inhibition of amylases from different origins by albumins from the wheat kernel. Biochim Biophys Acta 391: 170–178 (1975).

    PubMed  Google Scholar 

  48. Sogaard M, Olsen FL, Svensson B: C-terminal processing of barley α-amylase 1 in malt, aleurone protoplasts, and yeast. Proc Natl Acad Sci USA 88: 8140–8144 (1991).

    PubMed  Google Scholar 

  49. Sommer R, Tautz D: Minimal homology requirements for PCR primers. Nucl Acids Res 16: 6749 (1989).

    Google Scholar 

  50. Stephen CJ, Jones C, Schofield JP: A rapid method for isolating high quality plasmid DNA suitable for DNA sequencing. Nucl Acids Res 18: 7463–7464 (1990).

    PubMed  Google Scholar 

  51. Stuart LS, Harris TH: Bactericidal and fungicidal properties of a crystalline protein isolated from unbleached wheat flour. Cereal Chem 19: 288–300 (1942).

    Google Scholar 

  52. Terras FRG, Goderis IJ, VanLeuven F, Vanderleyden J, Cammue PA, Broekaert WF: In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspecific lipid transfer proteins. Plant Physiol 100: 1055–1058 (1992).

    Google Scholar 

  53. Van denBulcke M, Bauw G, Castresana C, VanMontagu M, Vandekerckhove J: Characterization of vacuolar and extracellular β-1,3-glucanases of tobacco: evidence for a strictly compartementalized plant defense system. Proc Natl Acad Sci USA 86: 2673–2677 (1989).

    Google Scholar 

  54. Vitale A, Chrispeels MJ: Sorting of proteins to the vacuoles of plant cells. BioEssays 14: 151–160 (1992).

    PubMed  Google Scholar 

  55. Von-Heijne G: A new method for predicting signal sequence cleavage sites. Nucl Acids Res 14: 4683–4690 (1986).

    PubMed  Google Scholar 

  56. Welinker KG: Amino acid sequence studies of horseradish peroxidase. Amino and carboxyl termini, cyanogen bromide and tryptic fragments, the complete sequence and some structural characteristics of horseradish peroxidase c. Eur J Biochem 96: 483–502 (1979).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gautier, MF., Aleman, ME., Guirao, A. et al. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25, 43–57 (1994). https://doi.org/10.1007/BF00024197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024197

Key words

Navigation