Skip to main content
Log in

Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The National Seed Storage Laboratory in Fort Collins, Colorado, is investigating pollen storage as a practical means for storing germplasm of clonally-held species. Careful regulation of pollen moisture content is necessary to safely store pollens and perform accurate in vitro germination tests. A series of dehydration and hydration curves were generated for Pinus ponderosa Dough. ex P. Laws., Picea pungens Engelm., and Carya illinoensis (Wangenh.) K. Koch pollens using five saturated salt solutions and water. Equilibrium moisture contents (EMCs) were also determined for Typha latifolia L., Phoenix dactylifera L., Corylus avellana L., and Zea mays L. Although rates of dehydration and hydration, and EMC varied with salt, pollen, and temperature, the pollens tested did survive the drying procedures and could successfully be stored in liquid nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NSSL -:

National Seed Storage Laboratory

EMC -:

Equilibrium Moisture Content

LN -:

Liquid Nitrogen

References

  • Berjak P., N.W.Pammenter & C.Vertucci, 1992. Homoiohydrous (recalcitrant) seeds: Developmental status, desiccation sensitivity and the state of water in axes of Landolphia kirkii Dyer. Planta 186: 249–261.

    Google Scholar 

  • Brewbarker J.L. & B.H.Kwack, 1963. The essential role of calcium ion in pollen germination and pollen tube growth. Amer. J. Bot. 50: 859–865.

    Google Scholar 

  • Copes D.L., 1985. Fertility of Douglas-fir pollen after one year of storage in liquid nitrogen. For. Sci. 31: 569–574.

    Google Scholar 

  • Copes D.L., 1987. Long-term storage of Douglas-fir pollens. For. Sci. 33: 244–246.

    Google Scholar 

  • Crowe J.H., F.A.Hoekstra & L.M.Crowe, 1989a. Membrane phase transitions are responsible for imbibitional damage in dry pollen. Proc. National Acad. Sci. 86: 520–523.

    Google Scholar 

  • Crowe J.H., F.A.Hoekstra, L.M.Crowe, T.J.Anchordoguy & E.Drobnis, 1989b. Lipid phase transitions measured in intact cells with Fourier Transform infrared spectroscopy. Cryobiol. 26: 76–83.

    Google Scholar 

  • Folch J., M.Lees & G.H. SloaneStanley, 1957. A simple method for the isolation and purification of total lipides from animal tissue. J. Biol. Chem. 226: 497–509.

    Google Scholar 

  • Ganzer K.M. & L.Rebenfeld, 1987. Laboratory-scale continuously variable humidity control with saturated salt solutions. Amer. Lab. 19: 40–47.

    Google Scholar 

  • Hecker R.J., P.C.Stanwood & C.A.Soulis, 1986. Storage of sugarbeet pollen. Euphytica 35: 777–783.

    Google Scholar 

  • Hoekstra F.A., 1984. Imbibitional chilling injury in pollen. Plant Physiol. 74: 815–821.

    Google Scholar 

  • Hoekstra F.A. & E.W.van derWal, 1988. Initial moisture content and temperature of imbibition determine extent of imbibitional injury in pollen. Plant Physiol. 133: 257–262.

    Google Scholar 

  • Lanner R.M., 1962. Controlling the moisture content of conifer pollen. Silvae Genet. 11: 114–117.

    Google Scholar 

  • Luza J.G. & V.S.Polito, 1987. Effects of desiccation and controlled rehydration on germination in vitro of pollen of walnut (Juglans spp.). Plant, Cell, Env. 10: 487–492.

    Google Scholar 

  • Roberts E.H., 1973. Predicting the storage life of seeds. Seed Sci. Technol. 1: 499–514.

    Google Scholar 

  • Sowa S., K.F.Connor & L.E.Towill, 1991. Temperature change in lipid and protein structure measured by Fourier Transform infrared spectrophotometry in intact pollen grains. Plant Sci. 78: 1–9.

    Google Scholar 

  • Stanley R.G. & H.F.Linskens, 1974. Pollen: Biology, Biochemistry, Management. Springer-Verlag, New York.

    Google Scholar 

  • Towill L.E., 1981. Liquid nitrogen preservation of pollen from tuber-bearing Solanum species. HortSci. 16: 177–179.

    Google Scholar 

  • Towill L.E., 1985. Low temperature and freeze-/vacuum-drying preservation of pollen. In: K.K.Kartha (Ed.), Cryopreservation of Plant Cells and Organs, pp. 171–198. CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • Vertucci C.W., 1989. Relationship between thermal transitions and freezing injury in pea and soybean seed. Plant Physiol. 90: 1121–1128.

    Google Scholar 

  • Vertucci C.W. & E.E.Roos, 1990. Theoretical basis of protocols for seed storage. Plant Physiol. 94: 1019–1023.

    Google Scholar 

  • Visser T., 1955. Germination and storage of pollen. Mededelingen van de Landbouwhogeschool, Wageningen Nederland 55: 1–68.

    Google Scholar 

  • Winston P.W. & D.H.Bates, 1960. Saturated solutions for the control of humidity in biological research. Ecology 41: 232–237.

    Google Scholar 

  • Yates I.E. & D.Sparks, 1989. Hydration and temperature influence in vitro germination of pecan pollen. J. Amer. Soc. Hort. Sci. 114: 599–605.

    Google Scholar 

  • Yates I.E., D.Sparks, K.Connor & L.Towill, 1991. Reducing pollen moisture simplifies long-term storage of pecan pollen. J. Amer. Soc. Hort. Sci. 116(3): 430–434.

    Google Scholar 

  • Young J.F., 1967. Humidity control in the laboratory using salt solutions—a review. J. Appl. Chem. 17: 241–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connor, K.F., Towill, L.E. Pollen-handling protocol and hydration/dehydration characteristics of pollen for application to long-term storage. Euphytica 68, 77–84 (1993). https://doi.org/10.1007/BF00024157

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024157

Key words

Navigation