Skip to main content
Log in

MAP kinases: universal multi-purpose signaling tools

  • Mini-Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

MAP (mitogen-activated protein) kinases are serine/threonine protein kinases and mediate intracellular phosphorylation events linking various extracellular signals to different cellular targets. MAP kinase, MAP kinase kinase and MAP kinase kinase kinase are functional protein kinase units that are conserved in several signal transduction pathways in animals and yeasts. Isolation of all three components was also shown in plants and suggests conservation of a protein kinase module in all eukaryotic cells. In plants, MAP kinase modules appear to be involved in ethylene signaling and auxin-induced cell proliferation. Therefore, coupling of different extracellular signals to different physiological responses is mediated by MAP kinase cascades and appears to have evolved from a single prototypical protein kinase module which has been adapted to the specific requirements of different organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini A, Crews CM, Erikson RL: Phorbol ester stimulates a protein-tyrosine/threonine kinase that phosphorylates and activates the ERK-1 gene product. Proc Natl Acad Sci USA 89: 8200–8204 (1992).

    PubMed  Google Scholar 

  2. Alvarez E, Nothwook IC, Gonzalez FA, Latour DA, Seth A, Abate C, Curran T, Davis JR: Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. J Biol Chem 266: 15277–15285 (1991).

    PubMed  Google Scholar 

  3. Banno H, Hirano K, Nakamura T, Irie K, Nomoto S, Matsumoto K, Machida Y: NPK1, a tobacco gene that encodes a protein with a domain homologous to yeast BCK1, STE11 and byr 2 protein kinases. Mol Cell Biol 13: 4745–4752 (1993).

    PubMed  Google Scholar 

  4. Boguslawski G, Polazzi JO: Complete nucleotide sequence of a gene conferring polymyxin resistance on yeast: similarity of the predicted polypeptide to protein kinases. Proc Natl Acad Sci USA 84: 5848–5852 (1987).

    PubMed  Google Scholar 

  5. Boulton T, Yancopoulos G, Gregory JS, Slaugther C, Moomaw C, Hsu J, Cobb MH: An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science 249: 64–67 (1990).

    PubMed  Google Scholar 

  6. Boulton T, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos G: ERKs: a family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675 (1991).

    Article  PubMed  Google Scholar 

  7. Brewster JL, Valoir T, Dwyer ND, Winter E, Gustin MC: An osmosensing signal transduction pathway in yeast. Science 259: 1760–1763 (1993).

    PubMed  Google Scholar 

  8. Chang F, Herskowitz I: Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63: 999–1011 (1990).

    Article  PubMed  Google Scholar 

  9. Charest DL, Mordret G, Harder KW, Jirik F, Pelech SL: Molecular cloning, expression and characterization of the human mitogen-activated protein kinase p44erk1. Mol Cell Biol 13: 4679–4690 (1993).

    PubMed  Google Scholar 

  10. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM: Arabidopsis ethylene response gene ETR1: similarity of product to two-component regulators. Science 262: 539–566.

  11. Chen R, Sarnecki C, Blenis J: Nuclear localisation and regulation of erk- and rsk- encoded protein kinases. Mol Cell Biol 12: 915–927 (1992).

    PubMed  Google Scholar 

  12. Crews CM, Erikson RL: Purification of a murine protein-tyrosine/threonine kinase that phosphorylates and activates the ERK-1 gene product: relationship to the fission yeast byr1 gene product. Proc Natl Acad Sci USA 89: 8205–8209 (1992).

    PubMed  Google Scholar 

  13. Davey J: Mating pheromones of the fission yeast S. pombe: purification and structural characterisation of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J 11: 951–960 (1992).

    PubMed  Google Scholar 

  14. Dent P, Lavoinne A, Nakielny S, Caudwell FB, Watt P, Cohen P: The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348: 302–308 (1990).

    Article  PubMed  Google Scholar 

  15. Dent P, Haser W, Haystead TAJ, Vincent LA, Roberts TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407 (1992).

    PubMed  Google Scholar 

  16. Dolan JW, Kirkman C, Fields S: The yeast STE12 protein binds to the DNA sequence mediating pheromone induction. Proc Natl Acad Sci USA 86: 5703–5707 (1989).

    PubMed  Google Scholar 

  17. Duerr B, Gawienowski M, Ropp T, Jacobs T: MsERK1: a mitogen-activated protein kinase from a flowering plant. Plant Cell 5: 87–96 (1993).

    Article  PubMed  Google Scholar 

  18. Elion EA, Brill JA, Fink GR: FUS3 inactivates G1 cyclins and, in concert with KSS1, promotes signal transduction. Proc Natl Acad Sci USA 88: 9392–9396 (1991).

    PubMed  Google Scholar 

  19. Ely CM, Oddie KM, Litz JS, Rossomando AJ, Kanner SB, Sturgill TW, Parsons SJ: A 42-kDa tyrosine kinase substrate linked to chromaffin cell secretion exhibits an associated MAP kinase activity and is highly related to a 42-kDa mitogen-stimulated protein in fibroblasts. J Cell Biol 110: 731–742 (1990).

    Article  PubMed  Google Scholar 

  20. Erikson RL: Structure, expression and regulation of protein kinases involved in the phosphorylation of ribosomal protein S6. J Biol Chem 266: 6007–6010 (1991).

    PubMed  Google Scholar 

  21. Errede B, Ammerer G: STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Devel 3: 1349–1361 (1989).

    PubMed  Google Scholar 

  22. Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G: MAP kinase-related FUS3 from S. cerevisiae is activated by STE7 in vitro. Nature 362: 261–264 (1993).

    PubMed  Google Scholar 

  23. Errede B, Levin DE: A conserved cascade for MAP kinase activation in yeast. Curr Opin Cell Biol 5: 254–260 (1993).

    PubMed  Google Scholar 

  24. Ferrell JE, Wu M, Gerhard JC, Martin GS: Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol Cell Biol 11: 1965–1971 (1991).

    PubMed  Google Scholar 

  25. Gartner A, Nasmyth K, Ammerer G: Signal transduction in S. cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Devel 6: 1280–1292 (1992).

    PubMed  Google Scholar 

  26. Gille H, Sharrocks AD, Shaw PE: Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation of c-fos promotor. Nature 358: 414–417 (1992).

    PubMed  Google Scholar 

  27. Gotoh Y, Moriyama K, Matsuda S, Okumura E, Kishimoto T, Kawasaki H, Suzuki K, Yahara I, Sakai H, Nishida E: Xenopus M phase MAP kinase: isolation of its cDNA and activation by MPF. EMBO J 10: 2661–2668 (1991).

    PubMed  Google Scholar 

  28. Grinstein S, Furuya W: Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophilis. J Biol Chem 267: 18122–18125 (1992).

    PubMed  Google Scholar 

  29. Haycock JW, Ahn NG, Cobb MH, Krebs EG: ERK1 and ERK2, two microtubule associated protein kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci USA 89: 2365–2369 (1992).

    PubMed  Google Scholar 

  30. Haystead TAJ, Weiel JE, Litchfield DW, Tsukitani Y, Fischer EH, Krebs EG: Okadaic acid mimics the role of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2A in attenuation of the signal. J Biol Chem 256: 16571–16580 (1990).

    Google Scholar 

  31. Hoshi M, Nishida E, Sakai H: Activation of a Ca2+-inhibitable protein kinase that phosphorylates microtubule-associated protein2 in vitro by growth factors, phorbolesters and serum in quiescent cultured human fibroblasts. J Biol Chem 263: 5396–5401 (1988).

    PubMed  Google Scholar 

  32. Howe LR, Leevers SJ, Gómez N, Nakielny S, Cohen P, Marshall CJ: Activation of MAP kinase pathway by protein kinase raf. Cell 71: 335–342 (1992).

    PubMed  Google Scholar 

  33. Hunter T, Karin M: The regulation of transcription by phosphorylation. Cell 70: 375–387 (1992).

    PubMed  Google Scholar 

  34. Irie K, Takase M, Lee KS, Levin DE, Araki H, Matsumoto K, Oshima Y: MKK1 and MKK2, which encode S. cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13: 3076–3083 (1993).

    PubMed  Google Scholar 

  35. Jonak C, Páy A, Bögre L, Hirt H, Heberle-Bors E: The plant homologue of MAP kinase is expressed in a cell cycle-dependent and organ-specific manner. Plant J 3: 611–617 (1993).

    Article  PubMed  Google Scholar 

  36. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427–441 (1993).

    Article  PubMed  Google Scholar 

  37. Kitamura K, Shimoda C: The S. pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the S. cerevisiae STE2 protein. EMBO J 12: 3743–3751 (1991).

    Google Scholar 

  38. Kosako H, Nishida E, Gotoh Y: cDNA cloning of MAP kinase kinase reveals kinase cascade pathways in yeast to vertebrates. EMBO J 12: 787–794 (1993).

    PubMed  Google Scholar 

  39. Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan L, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421 (1992).

    PubMed  Google Scholar 

  40. Lange-Carter CA, Pleiman CM, Gardner AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and raf. Science 260: 315–319 (1993).

    PubMed  Google Scholar 

  41. Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M: The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein bg subunit to downstream signalling components. EMBO J 11: 4815–4824 (1992).

    PubMed  Google Scholar 

  42. Lee K, Levin DE: Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a S. cerevisiae protein kinase C homolog. Mol Cell Biol 12: 172–182 (1992).

    PubMed  Google Scholar 

  43. Lee K, Ire K, Gotoh Y, Watanabe Y, Araki H, Nishida E, Matsumoto K, Levin DE: A yeast mitogen-activated protein kinase homolog (MPK1p) mediates signalling by protein kinase C. Mol Cell Biol 13: 3067–3075 (1993).

    PubMed  Google Scholar 

  44. Leevers SJ, Marshall CJ: Activation of extracellular signal regulated kinase, ERK2, by p21ras oncoprotein. EMBO J 11: 569–574 (1992).

    PubMed  Google Scholar 

  45. Leupold U, Nielsen O, Egel R: Pheromone induced meiosis in P-specific mutants of fission yeast. Curr Genet 15: 403–405 (1989).

    Google Scholar 

  46. Levin DE, Fields FD, Kunisawa R, Bishop JM, Thorner JA: A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 63: 213–224 (1990).

    Article  PubMed  Google Scholar 

  47. Levin DE, Bartett-Heubusch E: Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116: 1221–1229 (1992).

    Article  PubMed  Google Scholar 

  48. Lin L, Wartmann M, Lin A, Knopf JL, Seth A, Davis RJ: cPLA2 is phosphorylated and activated by MAP kinase. Cell 72: 269–278 (1993).

    Article  PubMed  Google Scholar 

  49. Matsuda S, Kosako H, Taktenaka K, Moriyama K, Sakai H, Akiyama T, Gotoh Y, Nishida E: Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11: 973–982 (1992).

    PubMed  Google Scholar 

  50. Meloche S, Seuwen K, Pages G, Pouyssegur J: Biphasic and synergistic activation of p44mapk (ERK1) by growth factors:correlation between late phase activation and mitogenicity. Mol Endocrinol 6: 845–854 (1992).

    Article  PubMed  Google Scholar 

  51. Mizoguchi T, Gotoh E, Nishida E, Yamaguchi-Shinozaki K, Hayashida N, Iwasaki T, Kamada H, Shinozaki K: Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J (in press).

  52. Nadin-Davis SA, Nasim A, Beach D: Involvement of ras in sexual differentiation but not in growth control in fission yeast. EMBO J 5: 2963–2948 (1986).

    Google Scholar 

  53. Nadin-Davis SA, Nasim A: S. pombe ras1 and byr1 are functionally related genes of the ste family that affect starvation-induced transcription of mating type genes. Mol Cell Biol 10: 549–560 (1990).

    PubMed  Google Scholar 

  54. Nakayama N, Miryajima A, Arai K: Nucleotide sequence of STE2 and STE3, cell type specific sterile genes from S. cerevisiae. EMBO J 4: 2643–2648 (1985).

    Google Scholar 

  55. Nebreda AR, Hunt T: The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J 12: 1979–1986 (1993).

    PubMed  Google Scholar 

  56. Neiman AM, Stevenson BJ, Xu H, Sparague GF, Herskowitz I, Wigler M, Marcus S: Functional homology of protein kinases required for sexual differentiation in S. pombe and S. cerevisiae suggests a conserved signal transduction module in eukaryotic organisms. Mol Biol Cell 4: 107–120 (1993).

    PubMed  Google Scholar 

  57. Nielsen O, Davey J, Egel R: The ras1 function of S. pombe mediates pheromone-induced transcription. EMBO J 11: 1391–1395 (1992).

    PubMed  Google Scholar 

  58. Northwood IS, Gonzalez FA, Warthmann M, Raden D, Davis RJ: Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate epidermal growth factor receptor at threomine 669. J Biol Chem 266: 15266–15276 (1991).

    PubMed  Google Scholar 

  59. Payne DM, Rossomando AJ, Martino P, Erikson AK, Her JH, Weber MJ, Sturgill TW: Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10: 885–892 (1991).

    PubMed  Google Scholar 

  60. Pelech SL, Sanghera JS: Mitogen-activated protein kinases: versatile transducers for cell signaling. Trends Biochem Sci 17: 233–238 (1992).

    PubMed  Google Scholar 

  61. Peter M, Gartner A, Horecka J, Ammerer G, Herskowitz I: FAR1 links the signal transduction pathway to the cell cycle machinery in yeast. Cell 73: 747–760 (1993).

    Article  PubMed  Google Scholar 

  62. Posada J, Sanghera J, Pelech S, Aebersold R, Cooper J: Tyrosine phosphorylation and activation of homologous protein kinases during ooycte maturation and mitogenic activation of fibroblasts. Mol Cell Biol 11: 2517–2528 (1991).

    PubMed  Google Scholar 

  63. Posada J, Cooper JA: Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255: 212–215 (1992).

    PubMed  Google Scholar 

  64. Pulverer BJ, Kyriakis JM, Avruch J, Nikolakaki E, Woodgett JR: Phosphorylation of c-jun mediated by MAP kinases. Nature 353: 670–674 (1991).

    Article  PubMed  Google Scholar 

  65. Ramer SI, Davis RW: A dominant truncation allele identifics a gene, STE20, that encodes a putative protein kinase necessary for mating in S. cerevisiae. Proc Natl Acad Sci USA 90: 452–456 (1993).

    PubMed  Google Scholar 

  66. Ray LB, Sturgill TW: Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule associated protein 2 in vitro. Proc Natl Acad Sci USA 84: 1502–1506 (1987).

    PubMed  Google Scholar 

  67. Rhodes N, Connell L, Errede B: STE11 is a protein kinase required for cell-type specific transcription and signal transduction in yeast. Genes Dev 4: 1862–1874 (1990).

    PubMed  Google Scholar 

  68. Robbins DJ, Cheng M, Zhen E, Vanderbilt CA, Feig LA, Cobb MH: Evidence for a ras-dependent extracellular signal-regulated protein kinase (ERK) cascade. Proc Natl Acad Sci USA 89: 6924–6928 (1992).

    PubMed  Google Scholar 

  69. Ronson CW, Nixon BT, Ausubel FM: Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49: 579–581.

  70. Ruderman JV: MAP kinase and the activation of quiescent cells. Curr Opin Cell Biol 5: 207–213 (1993).

    PubMed  Google Scholar 

  71. Sanghera JS, Peter M, Nigg EA, Pelech SL: Immunological characterization of avian MAP kinases: evidence for nuclear localisation. Mol Biol Cell 3: 775–787 (1992).

    PubMed  Google Scholar 

  72. Seth A, Alvarez E, Gupta S, Davis RJ: A phosphorylation site located in the NH2-terminal domain of c-myc increases transactivation of gene expression. J Biol Chem 266: 23521–23524 (1991).

    PubMed  Google Scholar 

  73. Shibuya EK, Boulton TG, Cobb MH, Ruderman JV: Activation of p42 MAP kinase and the release of oocytes from the cell cycle arrest. EMBO J 11: 3963–3975 (1992).

    PubMed  Google Scholar 

  74. Song O, Dolan JW, Yuan YO, Fields S: Pheromone-dependent phosphorylation of the yeast STE12 protein correlates with transcriptional activation. Genes Devel 5: 741–750 (1991).

    PubMed  Google Scholar 

  75. Stafstrom JP, Altschuler M, Anderson DH: Molecular cloning and expression of a MAP kinase homologue from pea. Plant Mol Biol 22: 83–90 (1993).

    PubMed  Google Scholar 

  76. Stevenson BJ, Rhodes N, Errede B, Sparague GF: Constitutive mutants of the protein kinase STE11 activate the yeast pheromone response pathway in the absence of the G protein. Genes Devel 6: 1293–1304 (1992).

    PubMed  Google Scholar 

  77. Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers S, Marshall C, Cohen P: MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 11: 3985–3994 (1992).

    PubMed  Google Scholar 

  78. Takishima K, Griswold-Prenner I, Ingebitsen T, Rosner MR: Epidermal growth factor (EGF) receptor T669 peptide kinase from 3T3-L1 cells in an EGF-stimulated MAP kinase. Proc Natl Acad Sci USA 88: 2520–2524 (1991).

    PubMed  Google Scholar 

  79. Tanaka K, Davery J, Imai Y, Yamamoto M: S. pombe map3 + encodes the putative M-factor receptor. Mol Cell Biol 13: 80–88 (1993).

    PubMed  Google Scholar 

  80. Teague MA, Chaleff DT, Errede B: Nucleotide sequence of the yeast regulatory gene STE7 predicts a protein homologous to protein kinases. Proc Natl Acad Sci USA 83: 7371–7375 (1986).

    PubMed  Google Scholar 

  81. Thomas SM, DeMarco M, D'Arcangelo G, Halegoua S, Brugge JS: Ras is essential for nerve growth factor- and phorbol ester-induced phosphorylation of MAP kinases. Cell 68: 1031–1040 (1992).

    Article  PubMed  Google Scholar 

  82. Toda T, Shimanuki M, Yanagida M. Fission yeast genes that confer resistance to staurosporine encode an AP-1-like transcription factor and a protein kinase related to the mammalian ERK/MAP2 and budding yeast FUS3 and KSS1 kinases. Genes Devel 5: 60–73 (1991).

    PubMed  Google Scholar 

  83. Torres L, Martin H, Garcia-Saez MI, Arroyo J, Molina M, Sánchez M, Nombela C: A protein kinase gene complements the lytic phenotype of Saccharomyes cerevisiae lyt2 mutants. Mol Microbiol 5: 2845–2854 (1991).

    PubMed  Google Scholar 

  84. Vouret-Craviari V, Van Obberghen-Schilling E, Schmeca JC, Pouyssegur J: Differential activation of p44mapk (ERK1) by a-thrombin and thrombin-receptor peptide agonist. Biochem J 289: 209–214 (1993).

    PubMed  Google Scholar 

  85. Wang Y, Xu H, Riggs M, Rodgers L, Wigler M: byr2, a S. pombe gene encoding a protein kinase capable of partial suppression of the ras 1 mutant phenotype. Mol Cell Biol 1: 3554–3563 (1991).

    Google Scholar 

  86. Wilson C, Eller N, Gartner A, Vicente O, Heberle-Bors E: Isolation and characterization of a tobacco cDNA clone encoding a putative MAP kinase. Plant Mol Biol, in press (1993).

  87. Wittenberg C, Sugimoto K, Reed SI: G1 specific cyclins of S. cerevisae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62: 225–237 (1990).

    Article  PubMed  Google Scholar 

  88. Wood KW, Sarnecki C, Roberts TM, Blenis J: ras mediates nerve growth factor receptor modulation of three signal transducing protein kinases: MAP kinases, raf-1 and RSK. Cell 68: 1041–1050 (1992).

    Article  PubMed  Google Scholar 

  89. Wu J, Harrison JK, Dent P, Lynch KR, Weber MJ, Sturgill TW: Identification and characterization of a new mammalian mitogen-activated protein kinase kinase, MKK2. Mol Cell Biol 13: 4539–4548 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonak, C., Heberle-Bors, E. & Hirt, H. MAP kinases: universal multi-purpose signaling tools. Plant Mol Biol 24, 407–416 (1994). https://doi.org/10.1007/BF00024109

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00024109

Key words

Navigation