Summary
An aspect of cereal science that is becoming increasingly important is comparative genetics. Establishment of the relationship between genomes within polyploids, between species within tribes and between species within families will allow not only the integration of genetic maps but also the knowledge acquired of each of the species. Using a set of homoeologous probes, workers found the relationship between the three wheat genomes to be precisely collinear, after taking a few major translocation events into account. Transfer of the wheat map to rye led to the elucidation of similar relationships between the three wheat genomes and that of rye. Genome collinearity, however, extends even beyond tribes. In a comparison of the genomes of wheat, rice and maize, it was shown that despite the separation of these genomes for possibly 50 million years, gene order was still highly conserved. This collinearity between genomes can be exploited in a number of ways.
This is a preview of subscription content, access via your institution.
References
Ahn S., J.A. Anderson, M.E. Sorrels & S.D. Tanksley, 1993. Homoeologous relationships of rice, wheat and maize chromosomes. Mol. & Gen. Genet. 241: 483–490.
Ahn S. & S.D. Tanksley, 1993. Comparative linkage maps of the rice and maize genomes. Proc. Nat. Acad. Sci. 90: 7980–7984.
Berhan A.M., S.H. Hulbert, L.G. Butler & J.L. Bennetzen, 1993. Structure and evolution of the genomes of Sorghum bicolor and Zea mays. Theor. Appl. Genet. 86: 598–604.
Burr B., F.A. Burr & E.C. Matz, 1993. Maize molecular map (Zea mays) 2N=20. In: S.J. O'Brien (Ed). Genetic maps, pp. 190–203. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Coe E.H. & M.G. Neuffer, 1993. Gene loci and linkage map of corn (maize) (Zea mays) (2N=20). In: S.J. O'Brien (Ed). Genetic maps, pp. 157–189. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Devos K.M., M.D. Atkinson, C.N. Chinoy, R.L. Harcourt, R.M.D. Koebner, C.J. Liu, P. Masojc, D.X. Xie & M.D. Gale, 1993a. Chromosome rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673–680.
Devos K.M., T. Millan & M.D. Gale, 1993b. Comparative RFLP maps of the homoeologous group 2 chromosomes of wheat, rye and barley. Theor. Appl. Genet. 85: 784–792.
Devos K.M., S. Chao, Q.Y. Li, M.C. Simonetti & M.D. Gale, 1994. Relationship between chromosome 9 of maize and wheat homoeologous group 7 chromosomes. Genetics. 138: 1287–1292.
Gale M.D., M.D. Atkinson, C.N. Chinoy, R.L. Harcourt, J. Jiu, Q.Y. Li & K.M. Devos, 1995. Genetic maps of hexaploid wheat.In: Z.S. Li & Z.Y. Xin (Eds). Proc. 8th Int. Wheat Genet. Symp., pp. 29–40. China Agricultural Scientech Press, Beijing.
Graner A., A. Jahoor, J. Schondelmaier, H. Siedler, K. Pillen, G. Fischbeck, G. Wenzel & R.G. Herrmann, 1991. Construction of an RFLP map of barley. Theor. Appl. Genet. 83: 250–256.
Heun M., A.E. Kennedy, J.A. Anderson, N.L.V. Lapitan, M.E. Sorrells & S.D. Tanksley, 1991. Construction of an FRLP map for barley (Hordeum vulgare L.). Genome 34: 437–447.
King I.P., K.A. Purdie, C.J. Liu, S.M. Reader, S.E. Orford, T.S. Pittaway & S.D. Miller, 1994. Detection of interchromosomal translocations within the Triticeae by RFLP analysis. Genome 37: 882–887.
Kleinhofs A., A. Kilian, M.A. Saghai Maroof, R.M. Biyashev, P. Hayes, F.Q. Chen, N. Lapitan, A. Fenwick, T.K. Blake, V. Kanazin, E. Ananiev, L. Dahleen, D. Kudma, J. Bollinger, S.J. Knapp, B. Liu, B. Sorrells, M. Heun, J.D. Franckowiak, D. Hoffman, R. Skadsen & B.J. Steffenson, 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86: 705–712.
Kochert G. & K.K. Jena, 1993. RFLP linkage map of Oryza officinalis, a wild rice (2n=2x=24). In: S.J. O'Brien (Ed). Genetic maps, pp. 80–81. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Kurata N., G. Moore, Y. Nagamura, T. Foote, M. Yano, Y. Minobe & M. Gale, 1994. Conservation of genome structure between rice and wheat. Bio/Technology 12: 276–278.
Laurie D.A., N. Pratchett, K.M. Devos, I.J. Leitch & M.D. Gale, 1993. The distribution of RFLP markers on chromosome 2 (2H) of barley in relation to the physical and genetic location of 5S rDNA. Theor. Appl. Genet. 83: 305–312.
Liu C.J., K.M. Devos, C.N. Chinoy, M.D. Atkinson & M.D. Gale, 1992. Non-homoeologous translocations between group 4,5 and 7 chromosomes in wheat and rye. Theor. Appl. Genet. 83: 305–312.
Melz G., R. Schlegel & V. Thiele, 1992. Genetic linkage map of rye (Secale cereale L.). Theor. Appl. Genet. 85: 33–45.
Miller T.E., 1984. The homoeologous relationship between the chromosomes of rye and wheat. Current status. Can. J. Genet. Cytol. 26: 578–589.
Naranjo T., A. Roca, P.G. Goicoechea & R. Giraldez, 1987. Arm homoeology of wheat and rye chromosomes. Genome 29: 873–882.
Naranjo T. & P. Fernández-Rueda, 1991. Homoeology of rye chromosome arms to wheat. Theor. Appl. Genet. 82: 577–586.
Tanksley S.D., T.M. Fulton & S.R. McCouch, 1993. Linkage map of rice (Oryza sativa) (2N=24). In: S.J. O'Brien (Ed). Genetic maps, pp. 61–79. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
Whitkus R., J. Doebley & M. Lee, 1992. Comparative genome mapping of sorghum and maize. Genetics 132: 1119–1130.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Devos, K.M., Moore, G. & Gale, M.D. Conservation of marker synteny during evolution. Euphytica 85, 367–372 (1995). https://doi.org/10.1007/BF00023969
Issue Date:
DOI: https://doi.org/10.1007/BF00023969