Skip to main content
Log in

Different 5′ leader sequences modulate β-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Three random synthetic leaders and three naturally-occurring leaders, the tobacco mosaic virus (TMV) coat protein, the satellite tobacco necrosis virus (STNV) and the plant chlorophyll a/b-binding protein (Cab22L), were shown to modulate the β-glucuronidase reporter protein accumulation levels in transient expression experiments. The same chimeric constructs also confer differential distribution patterns of reporter protein accumulation in stably-transformed tobacco calli or regenerated transgenic plants. When the highest expression levels with a given leader are compared, the 31-nucleotide random leader stimulates translation 20- and 100-fold relative to the 9- and 4- nucleotide synthetic leaders respectively. However, this 31-nucleotide random leader is approx. 2 to 3-fold weaker than the 30-nucleotide STNV leader and even 5-fold weaker than both the 79-nucleotide TMV leader and the 66-nucleotide Cab22L leader. These results confirm the findings in transient expression experiments and stress the importance of the 5′-untranslated region for the production of heterologous proteins in transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angenon G., J. Uotila, S.A. Kurkela, T.H. Teeri, J. Botterman, M.Van Montagu & A. Depicker, 1989. Expression of dicistronic transcriptional units in transgenic tobacco. Mol. Cell. Biol. 9: 5676–5684.

    PubMed  CAS  Google Scholar 

  • Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Breyne P., M.De Loose, A. Dedonder, M.Van Montagu & A. Depicker, 1993. Quantitative kinetic analysis of β-glucuronidase activities using a computer-directed microtiter plate readen. Plant Mol. Biol. Rep. 11: 21–31.

    Article  CAS  Google Scholar 

  • Carrington J.C. & D.D. Freed, 1990. Cap-independentenhancement of translation by a plant potyvirus 5′ nontranslated region. J. Virology 64: 1590–1597.

    PubMed  CAS  Google Scholar 

  • Casadaban M.J. & S.N. Cohen, 1980. Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J. Mol. Biol. 138: 179–207.

    Article  PubMed  CAS  Google Scholar 

  • Danthinne X. & J.Van Emmelo, 1990. Studies on the translational properties of STNV RNA non-coding regions. Med. Fac. Landbouww. Rijksuniv. Gent 55 (3a): 1037–1045.

    Google Scholar 

  • Danthinne X., J. Seurinck, M.Van Montagu, C.W.A. Pleij & J.Van Emmelo, 1991. Structural similarities between the RNAs of two satellites of tobacco necrosis virus. Virology 185: 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Danthinne X., J. Seurinck, F. Meulewaeter, M.Van Montagu & M. Cornelissen, 1993. The 3′ untranslated region of the satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol. Cell. Biol. 13: 3340–3349.

    PubMed  CAS  Google Scholar 

  • De Block M., J. Botterman, M. Vandewiele, J. Dockx, C. Thoen, V. Gosselé, R. Movva, C. Thompson, M.Van Montagu & J. Leemans, 1987. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513–2518.

    PubMed  Google Scholar 

  • Deblaere R., A. Reynaerts, H. Höfte, J.-P. Hemalsteens, J. Leemans & M.Van Montagu, 1987. Vectors for cloning in plant cells. In: R. Wu & L. Grossman (Eds) Recombinant DNA, part D (Methods in Enzymology, Vol. 153), pp. 277–292. Academic Press, New York.

    Google Scholar 

  • Denecke J., R.De Rycke & J. Botterman, 1992. Plant and mammalian sorting signals for protein retention in the endoplasmic reticulum contain a conserved epitope. EMBO J. 11: 2345–2355.

    PubMed  CAS  Google Scholar 

  • Depicker A., S. Stachel, P. Dhaese, P. Zambryski & H.M. Goodman, 1982. Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1: 561–573.

    PubMed  CAS  Google Scholar 

  • Depicker A., L. Herman, A. Jacobs, J. Schell & M.Van Montagu, 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol. Gen. Genet. 201: 477–484.

    Article  CAS  Google Scholar 

  • Gallie D.R. & V. Walbot, 1992. Identification of the motifs within the tobacco mosaic virus 5′-leader responsible for enhancing translation. Nucl. Acids Res. 20: 4631–4638.

    Article  PubMed  CAS  Google Scholar 

  • Gallie D.R., D.E. Sleat, J.W. Watts, P.C. Turner & T.M.A. Wilson, 1987a. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucl. Acids Res. 15: 3257–3273.

    Article  CAS  Google Scholar 

  • Gallie D.R., D.E. Sleat, J.W. Watts, P.C. Turner & T.M.A. Wilson, 1987b. A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucl. Acids Res. 15: 8693–8711.

    Article  CAS  Google Scholar 

  • Gamborg O.L., R.A. Miller & K. Ojima, 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Harpster M.H., J.A. Townsend, J.D.G. Jones, J. Bedbrook & P. Dunsmuir, 1988. Relative strengths of the 35S cauliflower mosaic virus, 1′, 2′, and nopaline synthase promoters in transformed tobacco sugarbeet and oilseed rape callus tissue. Mol. Gen. Genet. 212: 182–190.

    Article  PubMed  CAS  Google Scholar 

  • Hershey J.W.B., 1991. Translational control in mammalian cells. Ann. Rev. Biochem. 60: 717–755.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs S.L.A., P. Kpodar & C.M.O. DeLong, 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15: 851–864.

    Article  PubMed  CAS  Google Scholar 

  • Hobbs S.L.A., T.D. Warkentin & C.M.O. DeLong, 1993. Trans-gene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21: 17–26.

    Article  PubMed  CAS  Google Scholar 

  • Ingelbrecht I.L.W., L.M.F. Herman, R.A. Dekeyser, M.C.Van Montagu & A.G. Depicker, 1989. Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1: 671–680.

    Article  PubMed  CAS  Google Scholar 

  • Ingelbrecht I., H.Van Houdt, A. Depicker & M.Van Montagu, 1994. Post-transcriptional silencing of reporter genes in tobacco correlated with DNA methylation. Proc. Natl. Acad. Sci. USA. 91: 10502–10506.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R.A., 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  • Jobling S.A. & L. Gehrke, 1987. Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325: 622–625.

    Article  PubMed  CAS  Google Scholar 

  • Jones J.D.G., P. Dunsmuir & J. Bedbrook, 1985. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 4: 2411–2418.

    PubMed  CAS  Google Scholar 

  • Joshi C.P., 1987. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucl. Acids Res. 15: 6643–6653.

    Article  PubMed  CAS  Google Scholar 

  • Kozak M., 1989. The scanning model for translation: an update. J. Cell Biol. 108: 229–241.

    Article  PubMed  CAS  Google Scholar 

  • Nicolaisen M., E. Johansen, G.B. Poulsen & B. Borkhardt, 1992. The 5′ untranslated region from pea seedborne mosaic potyvirus RNA as a translational enhancer in pea and tobacco protoplasts. FEBS Lett. 303: 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Ow D.W., J.D. Jacobs & S.H. Howell, 1987. Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by use of the firefly luciferase gene as a reporter of promoter activity. Proc. Natl. Acad. Sci USA 84: 4870–4874.

    Article  PubMed  CAS  Google Scholar 

  • Sanders P.R., J.A. Winter, A.R. Barnason, S.G. Rogers & R.T. Fraley, 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucl. Acids Res. 15: 1543–1558.

    Article  PubMed  CAS  Google Scholar 

  • Sleat D.E., D.R. Gallie, R.A. Jefferson, M.W. Bevan, P.C. Turner & T.M.A. Wilson, 1987. Characterisation of the 5′-leader sequence of tobacco mosaic virus RNA as a general enhancer of translation in vitro. Gene 60: 217–225.

    Article  PubMed  CAS  Google Scholar 

  • Vancanneyt G., S. Rosahl & L. Willmitzer, 1990. Translatability of a plant-mRNA strongly influences its accumulation in transgenic plants. Nucl. Acids Res. 18: 2917–2921.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Loose, M., Danthinne, X., Van Bockstaele, E. et al. Different 5′ leader sequences modulate β-glucuronidase accumulation levels in transgenic Nicotiana tabacum plants. Euphytica 85, 209–216 (1995). https://doi.org/10.1007/BF00023950

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023950

Key words

Navigation