Skip to main content

The manipulation and modification of tomato fruit ripening by expression of antisense RNA in transgenic plants

Summary

The common cultivated tomato (Lycopersicon esculentum Mill.) provides a major focus for improvement of crop quality through genetic engineering. Identification of ripening-related cDNAs has enabled the modification of specific aspects of ripening by manipulating gene expression in transgenic plants. By utilizing ‘antisense RNA’ to modify expression of ripening genes, we have inhibited the production of the cell wall-metabolising enzymes polygalacturonase and pectinesterase and created transgenic plants that contain, effectively, single, targeted mutations affecting these genes. Furthermore, this approach has been used with previously unidentified cDNA clones to enable both functional identification and manipulation of genes involved in ethylene production (ACC oxidase) and carotenoid biosynthesis (phytoene synthase). The use of antisense RNA targeted to specific genes to alter ripening phenotypes and improve commercial utility of fruit by affecting shelf-life, processing characteristics and nutritional content is discussed.

We have used the extreme ripening-impaired mutant, ripening inhibitor (rin) to identify additional genes implicated in the ripening process. This approach has resulted in the cloning of several novel ripening-related mRNAs which are now being studied by antisense experiments. This may enable identification and manipulation of additional genes involved in processes such as softening, flavour and aroma generation and susceptibility to pathogens.

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

PE:

pectinesterase

PG:

polygalacturonase

SAM:

S-adenosyl methionine

SARs:

scaffold attachment regions

References

  1. Allen G.C., G.E. Hall, L.C. Childs, A.K. Wiessinger, S. Spiker & W.F. Thompson, 1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5: 603–613.

    PubMed  Article  CAS  Google Scholar 

  2. Armstrong G.A., M. Alberti & J.E. Hearst, 1990. Conserved enzymes mediate the early reactions of carotenoid biosynthesis in non-photosynthetic and photosynthetic prokaryotes. Proc. Natl. Acad. Sci. USA 87: 9975–9979.

    PubMed  Article  CAS  Google Scholar 

  3. Bird C.R., C.J.S. Smith, J.A. Ray, P. Moureau, M.W. Bevan, A.S. Bird, S. Hughes, P.C. Morris, D. Grierson & W. Schuch, 1988. The tomato polygalacturonase gene and ripening specific expression in transgenic plants. Plant Mol. Biol. 11: 651–662.

    Article  CAS  Google Scholar 

  4. Bird C.R., J.A. Ray, J.D. Fletcher, J.M. Boniwell, A.S. Bird, C. Teulieres, I. Blain, P.M. Bramley & W. Schuch, 1991. Using antisense RNA to study gene function: Inhibition of carotenoid biosynthesis in transgenic tomatoes. Bio-Technology 9: 635–639.

    CAS  Google Scholar 

  5. Bouzayen M., A. Hamilton, S. Picton, S. Barton & D. Grierson, 1992. Identification of genes for the ethylene-forming enzyme and inhibition of ethylene synthesis in transgenic plants using antisense genes. Biochem. Soc. Trans. 20: 76–79.

    PubMed  CAS  Google Scholar 

  6. Breyne P., M.Van Montague, A. Depiicker & G. Gheysen, 1992. Characterisation of a plant scaffold attachment region in a DNA fragment that normalizes transgene expression in tobacco. Plant Cell 4: 463–471.

    PubMed  Article  CAS  Google Scholar 

  7. Crookes P.R. & D. Grierson, 1983. Ultrastructure of tomato fruit ripening and the role of polygalacturonase isoenzymes in cell wall degradation. Plant Physiol. 72: 1088–1093.

    PubMed  Article  CAS  Google Scholar 

  8. Davies K.M. & D. Grierson, 1989. Identification of cDNA clones for tomato (Lycopersicon esculentum) mRNAs that accumulate during fruit ripening and leaf senescence in response to ethylene. Planta 179: 73–80.

    Article  CAS  Google Scholar 

  9. DellaPenna D., D.C. Alexander & A.B. Bennett, 1986. Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc. Natl. Acad. Sci. USA 83: 6420–6424.

    PubMed  Article  CAS  Google Scholar 

  10. Fray R.G. & D. Grierson, 1993. Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol. Biol. 22: 589–602.

    PubMed  Article  CAS  Google Scholar 

  11. Giovannoni J.J., D. DellaPenna, A.B. Bennett & R.L. Fischer, 1989. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening. Plant Cell 1: 53–63.

    PubMed  Article  CAS  Google Scholar 

  12. Gray J.E., S. Picton, J. Shabbeer, W. Schuch & D. Grierson, 1992. Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol. Biol. 19: 69–87.

    PubMed  Article  CAS  Google Scholar 

  13. Gray J.E., S. Picton & D. Grierson, 1994. The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening. Plant, Cell & Environ. 17: 557–571.

    Article  CAS  Google Scholar 

  14. Grierson D., M.J. Maunders, A. Slater, J. Ray, C.R. Bird, W. Schuch, M.J. Holdsworth, G.A. Tucker & J.E. Knapp, 1986a. Gene expression during tomato ripening. Phil. Trans. R. Soc. Lond. B 314: 399–410.

    Article  CAS  Google Scholar 

  15. Grierson D., G.A. Tucker, J. Keen, J. Ray, C.R. Bird & W. Schuch, 1986b. Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucl. Acids Res. 14: 8595–8603.

    Article  CAS  Google Scholar 

  16. Grierson D., M.E. Purton, J.E. Knapp & B. Bathgate, 1987. Tomato ripening mutants. In: H. Thomas & D. Grierson (Eds) Developmental Mutants in Higher Plants, pp. 73–94. Cambridge University Press, Cambridge.

    Google Scholar 

  17. Grierson D. & W. Schuch, 1993. Control of ripening. Phil. Trans. R. Soc. Lond. B342, 241–250.

    Article  CAS  Google Scholar 

  18. Hall L.N., G.A. Tucker, C.J.S. Smith, C.F. Watson, G.B. Seymour, Y. Bundick, J.M. Boniwell, J.D. Fletcher, J.A. Ray, W. Schuch, C.R. Bird & D. Grierson, 1993. Antisense inhibition of pectinesterase gene expression in transgenic tomatoes. The Plant Journal 3: 121–129.

    Article  CAS  Google Scholar 

  19. Hamilton A.J., G.W. Lycett & D. Grierson, 1990. Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287.

    Article  CAS  Google Scholar 

  20. Hamilton A.J., M. Bouzayen & D. Grierson, 1991. Identification of a tomato gene for the ethylene forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 88: 7434–7437.

    PubMed  Article  CAS  Google Scholar 

  21. Hobson G.E., 1965. The firmness of tomato fruit in relation to polygalacturonase activity. J. Hort. Sci. 40: 66–72.

    CAS  Google Scholar 

  22. Holdsworth M.J., C.R. Bird, J. Ray, W. Schuch & D. Grierson, 1987. Structure and expression of an ethylene-related mRNA from tomato. Nucl. Acids. Res. 15: 731–739.

    PubMed  Article  CAS  Google Scholar 

  23. Holdsworth M.J., W. Schuch & D. Grierson, 1988. Organisation and expression of a wound/ripening-related small multigene family from tomato. Plant Mol. Biol. 11: 81–88.

    Article  CAS  Google Scholar 

  24. John P., 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol. Biol. Rep. 9: 192–194.

    Article  Google Scholar 

  25. Kramer M., R.A. Sanders, R.E. Sheehy, M. Melis, M. Kuchn & W.R. Hiatt, 1990. Field evaluation of tomatoes with reduced polygalacturonase by antisense RNA. In: A.B. Bennett & S.D. O'Niel (Eds) Horticultural Biotechnology, pp. 347–355. Wiley-Liss, New York.

    Google Scholar 

  26. Kramer M., R. Sanders, H. Bolkan, C. Waters, R.E. Sheehy & R.W. Hiatt, 1992. Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: Processing, firmness and disease resistance. Postharvest Biol. Technol. 1: 241–255.

    Article  CAS  Google Scholar 

  27. Lincoln J.E., S. Cordes, E. Read & R.L. Fischer, 1987. Regulation of gene expression by ethylene during Lycopersicon esculentum (Tomato) fruit development. Proc. Natl. Acad. Sci. USA 84: 2793–2797.

    PubMed  Article  CAS  Google Scholar 

  28. Murray A.J., G.E. Hobson, W. Schuch & C.R. Bird, 1993. Reduced ethylene biosynthesis in EFE-antisense tomatoes has differential effects on the ripening process. Postharvest Biol. Technol. 2: 301–313.

    Article  CAS  Google Scholar 

  29. Nicholass, F.J., C.F. Watson, C.J.S. Smith, W. Schuch, C.R. Bird & D. Grierson, 1995. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene flanking regions. Plant Mol. Biol., in press.

  30. Oeller P.W., L.M. Wong, L.P. Taylor, D.A. Pike & A. Theologis, 1992. Reversible inhibition of tomato fruit senescence by antisense 1-aminocyclopropane-1-carboxylate synthase. Science 254: 427–439.

    Google Scholar 

  31. Peach C. & J. Velten, 1991. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17: 49–60.

    PubMed  Article  CAS  Google Scholar 

  32. Peñarrubia L., M. Aguilar, L. Margossian & R.L. Fischer, 1992. An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681–687.

    PubMed  Article  Google Scholar 

  33. Picton S., S.L. Barton, M. Bouzayen, A.J. Hamilton & D. Grierson, 1993a. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. The Plant Journal 3: 469–481.

    CAS  Google Scholar 

  34. Picton S., J.E. Gray, S. Barton, U. AbuBaker, A. Lowe & D. Grierson, 1993b. cDNA cloning and characterisation of novel ripening-related mRNAs with altered patterns of accumulation in the ripening inhibitor (rin) tomato ripening mutant. Plant Mol. Biol. 23: 193–207.

    Article  CAS  Google Scholar 

  35. Picton S., J.E. Gray, S. Payton, S. Barton, A. Lowe & D. Grierson, 1993c. A histidine decarboxylase-like mRNA is involved in tomato fruit ripening. Plant Mol. Biol. 23: 627–631.

    Article  CAS  Google Scholar 

  36. Picton S., J.E. Gray & D. Grierson, 1994. Ethylene genes and fruit ripening. In: P.J. Davies (Ed) Plant Hormones: Physiology, Biochemistry and Molecular Biology, in press. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  37. Ray J., C. Bird, M. Maunders, D. Grierson & W. Schuch, 1987. Sequence of pTOM 5, a ripening related cDNA from tomato. Nucl. Acids Res. 15: 10587.

    PubMed  Article  CAS  Google Scholar 

  38. Redenbaugh K., W. Hiatt, B. Martineau, M. Kramer, R. Sheehy, R. Sanders, C. Houck & D. Emlay, 1991. Safety assessment of genetically engineered fruits and vegetables. A case study of the Flavr SavrT M tomato. CRC Press, Boca Raton, USA.

    Google Scholar 

  39. Schuch W., G. Hobson, K. Kanczler, G. Tucker, D. Robertson, D. Grierson, S. Bright & C. Bird, 1991. Improvement of tomato fruit quality through genetic engineering. HortScience 26: 1517–1520.

    CAS  Google Scholar 

  40. Seymour G.B., R.G. Fray, P. Hill & G.A. Tucker, 1993. Down-regulation of two non-homologous endogenous tomato genes with a single chimeric sense gene construct. Plant Mol. Biol. 23: 1–9.

    PubMed  Article  CAS  Google Scholar 

  41. Sheehy R.E., J. Pearson, C.J. Brady & W.R. Hiatt, 1987. Molecular characterization of tomato fruit polygalacturonase. Mol. Gen. Genet. 208: 30–36.

    Article  CAS  Google Scholar 

  42. Sheehy R.E., M. Crammer & W.R. Hiatt, 1988. Reduction of polygalacturonase activity in tomato fruit by antisense RNA. Proc. Natl. Acad. Sci. USA 85: 8805–8809.

    PubMed  Article  CAS  Google Scholar 

  43. Slater A., M.J. Maunders, K. Edwards, W. Schuch & D. Grierson, 1985. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening related proteins. Plant Mol. Biol. 5: 137–147.

    Article  CAS  Google Scholar 

  44. Smith C.J.S., A. Slater & D. Grierson, 1986. Rapid appearance of a mRNA correlated with ethylene synthesis encoding a protein of MW 35,000. Planta 168: 94–100.

    Article  CAS  Google Scholar 

  45. Smith C.J.S., C.F. Watson, J. Ray, C.R. Bird, P.C. Morris, W. Schuch & D. Grierson, 1988. Antisense RNA inhibition of polygalacturonase gene expression in transgenic tomatoes. Nature 334: 724–726.

    Article  CAS  Google Scholar 

  46. Smith C.J.S., C.F. Watson, P.C. Morris, C.R. Bird, G.B. Seymour, J.E. Gray, C. Arnold, G.A. Tucker, W. Schuch, S. Harding & D. Grierson, 1990. Inheritance and effect on ripening of antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol. 14: 369–379.

    PubMed  Article  CAS  Google Scholar 

  47. Spanu P., D. Reinhart & T. Boller, 1991. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J. 10: 2007–2013.

    PubMed  CAS  Google Scholar 

  48. Tieman D.M., R.W. Harriman, G. Ramamohan & A.K. Handa, 1992. An antisense pectinmethylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4: 667–679.

    PubMed  Article  CAS  Google Scholar 

  49. van der Krol A.R., P.E. Lenting, J. Veenstra, I.M.Van der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol & A.R. Stuitje, 1988. An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869.

    Article  Google Scholar 

  50. Yang S.F. & N.E. Hoffman, 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35: 155–189.

    CAS  Google Scholar 

  51. Yang S.F., 1985. Biosynthesis and action of ethylene. HortScience 20: 41–45.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Picton, S., Gray, J.E. & Grierson, D. The manipulation and modification of tomato fruit ripening by expression of antisense RNA in transgenic plants. Euphytica 85, 193–202 (1995). https://doi.org/10.1007/BF00023948

Download citation

Key words

  • carotenoids
  • ethylene
  • gene expression
  • Lycopersicon esculentum Mill.
  • polygalacturonase
  • pectinesterase
  • phytoene synthase
  • ACC oxidase