Advertisement

Euphytica

, Volume 85, Issue 1–3, pp 149–158 | Cite as

Strategies for engineering virus resistance in transgenic plants

  • T. A. Kavanagh
  • C. Spillane
Article

Summary

Transgenic virus-resistant plants were first produced in 1986 by genetically engineering tobacco plants to express the coat protein of tobacco mosaic virus. The introduction of coat protein transgenes has since proved to be an extremely effective and generally applicable approach to engineering virus resistance in crop plants. Extensive field trials with transgenic, virus-resistant tobacco, tomato, potato and cucumber lines have confirmed not only the durability of the resistance under natural conditions but the ease with which virus-resistant lines retaining the original cultivar traits can be recovered.

A number of alternative anti-viral strategies based on transgenes from a surprisingly wide variety of sources have also been developed. These include the use of viral genes coding for proteins involved in the replication cycle and in systemic transport of viruses within the plant, the use of interfering viral RNA sequences, and the use of transgenes derived from plant and animal sources. In the latter category, the use of mammalian antibodies to confer disease resistance in plants is a particularly exciting new development. Considerable progress has also been made towards the molecular cloning of natural anti-viral resistance genes in plants.

Key words

plant genetic engineering virus-resistant transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams S.E., R.A.C. Jones & R.H.A. Coutts, 1986. Expression of potato virus X resistance gene Rx in potato leaf protoplasts. J. Gen. Virol. 67: 2341–2345.CrossRefGoogle Scholar
  2. Alexander D., R.M. Goodman, M. Gut-Rella, C. Glascock, K. Weyman, L. Friedrich, D. Maddox, P. Ahl-Goy, T. Lunz, E. Ward & J. Ryals, 1993. Increased tolerance of two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1 a. Proc. Natl. Acad. Sci. USA 90: 7327–7331.PubMedCrossRefGoogle Scholar
  3. Anderson J.M., P. Palukaitis & M. Zaitlin, 1992. A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 89: 8759–8763.PubMedCrossRefGoogle Scholar
  4. Audy P., P. Palukaitis, S.A. Slack & M. Zaitlin, 1994. Replicasemediated resistance to potato virus Y in transgenic tobacco plants. Mol. Plant-Microbe Interact. 7: 15–22.PubMedGoogle Scholar
  5. Barker H., B. Reavy, K.D. Webster, C.A. Jolly, A. Kumar & M.A. Mayo, 1993. Relationship between transcript production and virus resistance in tobacco expressing the potato leafroll virus coat protein gene. Plant Cell Rep. 13: 54–58.CrossRefGoogle Scholar
  6. Braun C.J. & C.L. Hemenway, 1992. Expression of amino-terminal portions or full-length viral replicase genes in transgenic plants confers resistance to potato virus X infection. Plant Cell 4: 735–744.PubMedCrossRefGoogle Scholar
  7. Day A.G., E.R. Bejarano, K.W. Buck, M. Burrell & C.P. Lichtenstein, 1991. Expression of an antisense viral gene in transgenic tobacco confers resistance to the DNA virus tomato golden mosaic virus. Proc. Natl. Acad. Sci. USA 88: 6721–6725.PubMedCrossRefGoogle Scholar
  8. de Haan P., J.J.L. Gielen, M. Prins, I.G. Wijkamp, A.van Schepen, D. Peters, M.Q.J.M.van Grinsven & R. Goldbach, 1992. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants. Bio/Technology 10: 1133–1137.PubMedCrossRefGoogle Scholar
  9. Deom C.M., M. Lapidot & R.N. Beachy, 1992. Plant virus movement proteins. Cell 69: 221–224.PubMedCrossRefGoogle Scholar
  10. de Zoeten G.A., 1991. Risk assessment: Do we let history repeat itself? Phytopathology 81: 585–586.Google Scholar
  11. Dinant S., F. Blaise, C. Kusiak, S. Astier-Manifacier & J. Albouy, 1993. Heterologous resistance to potato virus Y in transgenic tobacco plants expressing the coat protein gene of lettuce mosaic potyvirus. Phytopathology 83: 818–824.CrossRefGoogle Scholar
  12. Dixon R.A. & C.J. Lamb, 1990. Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 339–367.CrossRefGoogle Scholar
  13. Donson J., C.M. Keamey, T.H. Turpen, I.A. Khan, G. Kurath, A.M. Turpen, G.E. Jones, W.O. Dawson & D.J. Lewandowski, 1993. Broad resistance to tobamoviruses is mediated by a modified tobacco mosaic virus replicase gene. Mol. Plant-Microbe Interact. 6: 635–642.PubMedGoogle Scholar
  14. Falk B.W. & G. Breuning, 1994. Will transgenic crops generate new viruses and new diseases? Science 263: 1395–1396.PubMedCrossRefGoogle Scholar
  15. Farinelli L. & P. Malnoe, 1993. Coat protein gene-mediated resistance to potato virus Y in tobacco: examination of the resistance mechanisms-Is the transgenic coat protein required for protection? Mol. Plant-Microbe Interact. 6: 284–292.PubMedGoogle Scholar
  16. Fraser R.S.S., 1990. Genes for resistance to plant viruses. Crit. Rev. Plant Sci. 3: 275–294.Google Scholar
  17. Fulton R.W., 1986. Practices and precautions in the use of cross protection for plant virus disease control. Ann. Rev. Phytopath. 24: 67–93.CrossRefGoogle Scholar
  18. Gaffney T., L. Friedrich, B. Vernooij, D. Negrotto, G. Nye, S. Uknes, E. Ward & J. Ryals, 1993. Requirement for salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756.PubMedCrossRefGoogle Scholar
  19. Gerlach W.L., D. Llewellyn & J. Haseloff, 1987. Construction of a disease resistance gene using the satellite RNA of tobacco ringspot virus. Nature 328: 802–806.CrossRefGoogle Scholar
  20. Gielen J.J.L., P.de Haan, A.J. Kool, D. Peters, M.Q.J.M. van Grinsven & R.W. Goldbach, 1991. Engineered resistance to tomato spotted wilt virus, a negative strand RNA virus. Bio/Technology 9: 1363–1367.CrossRefGoogle Scholar
  21. Golemboski D.B., G.P. Lomonosoff & M. Zaitlin, 1990. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. Proc. Natl. Acad. Sci. USA 87: 6311–6315.PubMedCrossRefGoogle Scholar
  22. Gonsalves D., P. Chee, R. Provvidenti, R. Seem & J.L. Slightom, 1992. Comparison of coat protein-mediated and genetically-derived resistance in cucumbers to infection by cucumber mosaic virus under field conditions with natural challenge inoculations by vectors. Bio/Technology 10: 1562–1570.CrossRefGoogle Scholar
  23. Harrison B.D., M.A. Mayo & D.C. Baulcombe, 1987. Virus resistance in plants that express cucumber mosaic virus satellite RNA. Nature 328: 799–802.CrossRefGoogle Scholar
  24. Hemenway C., R.-X. Fang, J.J. Kaniewski, N.-H. Chua & N.E. Tumer, 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X coat protein or its antisense RNA. EMBO J. 7: 1273–1280.PubMedGoogle Scholar
  25. Hiatt A., R. Cafferkey & K. Bowdish, 1989. Production of antibodies in transgenic plants. Nature 342: 76–78.PubMedCrossRefGoogle Scholar
  26. Hooftvan Huijsduijnen, R.A.M., S.W. Alblas, R.H.De Rijk & J.F. Bol, 1986b. Induction by salicylic acid of pathogenesis-related proteins and resistance to alfalfa mosaic virus infection in various plant species. J. Gen. Virol. 67: 2135–2143.CrossRefGoogle Scholar
  27. Hooftvan Huijsduijnen, R.A.M., L.C.Van Loon & J.F. Bol, 1986a. cDNA cloning of six mRNAs induced by TMV infection of tobacco and a characterization of their translation products. EMBO J. 5: 2057–2061.Google Scholar
  28. Hull R. & J.W. Davies, 1992. Approaches to nonconventional control of plant virus diseases. Crit. Rev. Plant Sci. 11: 17–33.CrossRefGoogle Scholar
  29. Jones, J.D.G., M. Dixon, K. Hammond-Kosack, K. Harrison, K. Hatzixanthis, D. Jones & C. Thomas, 1994. Characterization of tomato genes that confer resistance to Cladosporium fulvum. Abstracts, 4th International Congress of Plant Molecular Biology.Google Scholar
  30. Jongedijk E., A.J.M.de Schutter, T. Stolte, P.J.M.van den Elzen & B.J.C. Cornelissen, 1992. Increased resistance to potato virus X and preservation of cultivar properties in transgenic potato under field conditions. Bio/Technology 10: 422–429.PubMedCrossRefGoogle Scholar
  31. Kaniewski W., C. Lawson, B. Sammons, L. Haley, J. Hart, X. Delannay & N.E. Tumer, 1990. Field resistance of transgenic russet burbank potato to effects of infection by potato virus X and potato virus Y. Bio/Technology 8: 750–754.CrossRefGoogle Scholar
  32. Kauffman S., M. Legrand, P. Geoffroy & G. Fritig, 1987. Biological function of ‘pathogenesis-related’ proteins: Four PR proteins of tobacco have 1,3-beta glucanase activity. EMBO J. 6: 3209–3212.Google Scholar
  33. Kavanagh T., M. Goulden, S. Santa Cruz, S. Chapman, I. Barker & D.C. Baulcombe, 1992. Molecular analysis of a resistancebreaking strain of potato virus X. Virology 189: 609–617.PubMedCrossRefGoogle Scholar
  34. Kohm B.A., M.G. Goulden, J.E. Gilbert, T.A. Kavanagh & D.C. Baulcombe, 1993. A potato virus X resistance gene mediates an induced, non-specific resistance in protoplasts. The Plant Cell 5: 913–920.PubMedCrossRefGoogle Scholar
  35. Kallar A., T. Dalmay & J. Burgyan, 1993. Defective interfering RNA-mediated resistance against cymbidium ringspot tombusvirus in transgenic plants. Virology 193: 313–318.CrossRefGoogle Scholar
  36. Kulaeva O.N., A.B. Fedina, E.A. Burkhanova, N.N. Karaivako, M.Y. Karpeisky, I.B. Kaplan, M.E. Taliansky & J.G. Atabekov, 1992. Biological activities of human interferon and 2′–5′ oligoad-enylates in plants. Plant Mol. Biol. 20: 383–393.PubMedCrossRefGoogle Scholar
  37. Kunik T., R. Salomon, D. Zamir, N. Navot, M. Zeidan, I. Michelson, Y. Gafni & H. Czosnek, 1994. Transgenic tomato plants expressing the tomato leaf curl virus capsid protein are resistant to the virus. Bio/Technology 12: 500–506.PubMedCrossRefGoogle Scholar
  38. Lapidot M., R. Gafny, B. Ding, S. Wolf, W.J. Lucas & R.N. Beachy, 1993. A dysfunctional movement protein of tobacco mosaic virus that partially modifies the plasmodesmata and limits virus spread in transgenic plants. Plant J. 4: 959–970.CrossRefGoogle Scholar
  39. Legrand M., S. Kauffman, P. Geoffrey & B. Fritig, 1987. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc. Natl. Acad. Sci. USA 84: 6750–6754.PubMedCrossRefGoogle Scholar
  40. Linthorst H.J.M., R.L.J. Meuwissen, S. Kauffman & J.F. Bol, 1989. Constitutive expression of pathogenesis-related proteins PR-1, GRP, and PR-S in tobacco has no effect on virus infection. The Plant Cell 1: 285–291.PubMedCrossRefGoogle Scholar
  41. Lodge J.K., W.K. Kaniewski & N.E. Tumer, 1993. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc. Natl. Acad. Sci. USA 90: 7089–7093.PubMedCrossRefGoogle Scholar
  42. Loesch-Fries L.S., D. Merlo, T. Zinnen, L. Burhop, K. Hill, K. Krahn, N. Jarvis, S. Nelson & E. Halk, 1987. Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus resistance. EMBO J. 6: 1845–1851.PubMedGoogle Scholar
  43. Longstaff M., G. Brigneti, F. Boccard, S. Chapman & D.C. Baulcombe, 1993. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase. EMBO J. 12: 379–386.PubMedGoogle Scholar
  44. Macfarlane S.A. & J.W. Davies, 1992. Plants transformed with a region of the 201-kilodalton replicase gene from pea early browning virus RNA1 are resistant to virus infection. Proc. Natl. Acad. Sci. USA 89: 5829–2833.PubMedCrossRefGoogle Scholar
  45. Maiti I.B., J.F. Murphy, J.G. Shaw & A.G. Hunt, 1993. Plants that express a potyvirus proteinase gene are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90: 6110–6114.PubMedCrossRefGoogle Scholar
  46. Martin G.B., S.H. Brommoschenkels, J. Chunwongse, A. Frary, M.W. Ganal, R. Spivey, T. Wu, E.D. Earle & S.D. Tanksley, 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436.PubMedCrossRefGoogle Scholar
  47. Nakajima M., T. Hayakawa, I. Nakamura & M. Suzuki, 1993. Protection against cucumber mosaic virus (CMV) strains O and Y and chrysanthemum mild mottle virus in transgenic plants expressing CMV-O coat protein. J. Gen. Virol. 74: 319–322.PubMedCrossRefGoogle Scholar
  48. Nejidat A. & R.N. Beachy, 1990. Transgenic tobacco plants expressing a tobacco virus coat protein gene are resistant to some tobamoviruses. Mol. Plant Microb. Interact. 3: 247–251.Google Scholar
  49. Nelson R.S., D.A. Roth & J.D. Johnson, 1993. Tobacco mosaic virus infection of transgenic Nicotiana tabacum plants is inhibited by antisense constructs directed a the 5′ region of viral-RNA. Gene 127: 227–232.PubMedCrossRefGoogle Scholar
  50. Palukaitis P., M.J. Roosinck, R.G. Dietzgen & R.I.B. Francki, 1992. Cucumber mosaic virus. Adv. Virus Res. 41: 281–348.PubMedCrossRefGoogle Scholar
  51. Powell-Abel P.A., R.S. Nelson, B.De, N. Hoffman, S.G. Rogers, R.T. Fraley & R.N. Beachy, 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743.CrossRefGoogle Scholar
  52. Ritter E., T. Debener, A. Barone, F. Salamini & C. Gebhart, 1991. RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol. Gen. Genet. 227: 81–85.PubMedCrossRefGoogle Scholar
  53. Roberts W.K. & C.P. Selitrennikoff, 1990. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 136: 1171–1778.Google Scholar
  54. Rubino L., R. Lopo & M. Russo, 1993. Resistance of cymbidium ringspot virus infection in transgenic Nicotiana benthamiana plants expressing full-length viral replicase gene. Mol. Plant-Microbe Interact. 6: 729–734.Google Scholar
  55. Sanders P.R., B. Sammons, W. Kaniewski, L. Haley, J. Layton, B.J. Lavallee, X. Delannay & N.E. Tumer, 1992. Field resistance of transgenic tomatoes expressing the tobacco mosaic virus or tomato mosaic virus coat protein genes. Phytopathology 82: 683–690.CrossRefGoogle Scholar
  56. Sanford J.C. & S.A. Johnson, 1985. The concept of parasite-derived resistance-deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113: 395–405.CrossRefGoogle Scholar
  57. Stark D.M. & R.N. Beachy, 1989. Protection against potyvirus infection in transgenic plants: evidence for broad spectrum resistance. Bio/Technology 7: 1257–1262.Google Scholar
  58. Stirpe F., L. Barbieri, M.G. Battelli, M. Soria & D.A. Lappi, 1992. Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10: 405–412.PubMedCrossRefGoogle Scholar
  59. Tavladoraki P., E. Benvenuto, S. Trinca, D.De Martinis, A. Cattaneo & P. Galeffi, 1993. Transgenic plants expressing a functional single chain Fv antibody are specifically protected from virus attack. Nature 366: 469–472.PubMedCrossRefGoogle Scholar
  60. Taylor S., A. Massiah, G. Lomonossoff, L.M. Roberts, J.M. Lord & M. Hartley, 1994. Correlation between the activities of five ribosome-inactivating proteins in depurination of tobacco ribosomes and inhibition of tobacco mosaic virus infection. Plant J. 5: 827–835.PubMedCrossRefGoogle Scholar
  61. Tepfer M., 1993. Viral genes and transgenic plants. Bio/Technology 11: 1125–1129.Google Scholar
  62. Tomlinson J.A., V.M. Walker, T.H. Flewett & G.R. Barclay, 1974. The inhibition of infection by cucumber mosaic virus by extracts from Phytolacca americana. J. Gen. Virol. 22: 225–232.PubMedCrossRefGoogle Scholar
  63. Truve E., A. Aaspollu, J. Honkanen, R. Puska, M. Mehto, A. Hassi, T.H. Teeri, M. Kelve, P. Seppanen & M. Saarma, 1993. Transgenic potato plants expressing mammalian 2′–5′ oligoadenylate synthetase are protected from potato virus X infection under field conditions. Bio/Technology 11: 1048–1052.PubMedCrossRefGoogle Scholar
  64. Vardi E., I. Sela, O. Edelbaum, O. Livneh, L. Kuznetsova & Y. Stram, 1993. Plants transformed with a cistron of a potato virus Y protease (NIa) are resistant to virus infection. Proc. Natl. Acad. Sci. USA 90: 7513–7517.PubMedCrossRefGoogle Scholar
  65. Ward E.R., S.J. Uknes, S.C. Williams, S.S. Dincher, D.L. Wiederhold, D.C. Alexander, P. Ahl-Goy, J.P. Metraux & J.A. Ryals, 1991. Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094.PubMedCrossRefGoogle Scholar
  66. Whitham S., S.P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr & B. Baker, 1994. The product of the tobacco mosaic virus resistance gene N: Similarity to Toll and the Interleukin 1 receptor. Cell 78, 1101–1115.PubMedCrossRefGoogle Scholar
  67. Zaccomer B., F. Cellier, J-C. Boyer, A-L. Haenni & M. Tepfer, 1993. Transgenic plants that express genes including the 3′ untranslated region of the turnip yellow mosaic virus (TYMV) genome are partially protected against TYMV infection. Gene 136: 87–94.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • T. A. Kavanagh
    • 1
  • C. Spillane
    • 1
  1. 1.Department of GeneticsTrinity CollegeDublin 2Ireland

Personalised recommendations