Skip to main content
Log in

Studies of the mechanism of transgene integration into plant protoplasts: improvement of the transformation rate

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

The production of transgenic plants by means of direct gene transfer to protoplasts is now a widely-used technique. The biological mechanisms underlying the transformation are still poorly understood, but many investigations have attempted to shed light on some components of this process. Varying the experimental conditions has in some cases led to better transformation rates, but further improvements of the protocols are possible. Such improvements will require a better understanding of how the alien DNA enters the cells, becomes integrated into the chromosomes and is treated as a part of the plant genome. Irradiation with sublethal doses of X-rays or UV-light has been shown to increase the transformation frequency, while certain drugs have been shown to act in a similar manner. The effects of these and other factors are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aph:

aphidicolin

ATF:

absolute transformation frequency

BLM:

bleomycin

CaMV:

cauliflower mosaic virus

CAT:

chloramphenicol acetyl transferase

CHO:

Chinese hamster ovary cells

EF:

enhancement factor

Nos:

nopaline synthase

NPTII:

neomycin phosphotransferase II

Ocs:

octopine synthase

PEG:

polyethyleneglycol

RTF:

relative transformation frequency

References

  • Ballas N., N. Zakai, D. Friedberg & A. Loyter, 1988. Linear forms of plasmid are superior to supercoiled structures as active templates for gene expression in plant protoplasts. Plant Molec. Biol. 11: 517–527.

    Article  CAS  Google Scholar 

  • Bates G.W., S.A. Carle & W.C. Piastuch, 1990. Linear DNA introduced into carrot protoplasts by electroporation undergoes ligation and recircularization. Plant Molec. Biol. 14: 899–908.

    Article  CAS  Google Scholar 

  • Benediktsson I., F. Köhler & O. Schieder, 1991. Transient and stable expression of marker genes in cotransformed Petunia protoplasts in relation to X-ray and UV-irradiation. Transgenic Res. 1: 38–44.

    Article  CAS  Google Scholar 

  • Benediktsson I., C.P. Spampinato, C.S. Andreo & O. Schieder, 1994. Analysis of DNA polymerase activity in Petunia protoplasts treated with clastogenic agents. Physiol. Plant 90: 445–450.

    Article  CAS  Google Scholar 

  • Bianchi N.O. & D.M. López-Larraza, 1991. DNA damage and repair induced by bleomycin in mammalian and insect cells. Environm. Molec. Mutagen. 17: 63–68.

    Article  CAS  Google Scholar 

  • Bohr V.A., C.A. Smith, D.S. Okumoto & P.C. Hanawalt, 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more different than in the genome overall. Cell 40: 359–369.

    Article  PubMed  CAS  Google Scholar 

  • Burger R.M., J. Peisach & S.B. Horwitz, 1981. Mechanism of bleomycin action: in vitro studies. Life Sci. 28: 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee A. & M.J. Raman, 1988. A comparison of aberation distribution and cell-cycle progression in cells treated with bleomycin with those exposed to X-rays. Mutat. Res. 202: 51–57.

    PubMed  CAS  Google Scholar 

  • Czernilowski A.P., R. Hain, L. Herrera-Estrella, H. Lörz, E. Goyvaerts, B.J. Baker & J. Schell, 1986. Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA 5: 101–113.

    Article  Google Scholar 

  • Davey M.R., E.C. Cocking, J. Freeman, N. Pearce & I. Tudor, 1980. Transformation of Petunia protoplasts by isolated Agrobacterium plasmids. Plant Sci. Lett. 18: 307–313.

    Article  CAS  Google Scholar 

  • Dzelzkalns V.A. & L. Bogorad, 1985. Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by irradiation. J. Bacteriol. 165 (3): 964–971.

    Google Scholar 

  • Fraley R.T., S.G. Rogers, R.B. Horsch, P.R. Sanders, J.S. Flick, S.P. Adams, M.L. Bittner, L.A. Brand, C.L. Fink, J.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffmann & S.L. Woo, 1983. Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  • Gharti-Chhetri G.B., W. Cherdshewasart, J. Dewulf, J. Paszkowski, M. Jacobs & I. Negrutiu, 1990. Hybrid genes in the analysis of transformation conditions.3. Temporal/spatial fate of NTPII gene integration, its inheritance and factors affecting these processes in Nicotiana plumbaginifolia. Plant Molec. Biol. 14: 687–696.

    Article  CAS  Google Scholar 

  • Gould A.R. & R.J. Daines, 1985. Plant protoplasts and the cell cycle. In: L.C. Fowke & F. Constable (Eds). Plant Protoplasts, pp. 67–76. CRC-Press, Boca Raton, Florida.

    Google Scholar 

  • Hain R., P. Stabel, A.P. Czernilofsky, H.H. Steinbiß, L. Herrera-Estrella & J. Schell, 1985. Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol. Gen. Genet. 199: 161–168.

    Article  CAS  Google Scholar 

  • Hall R.D., F.A. Krens & J.A. Rouwendal, 1992. DNA radiation damage and asymmetric somatic hybridization: Is UV a potential substitute or supplement to ionizing radiation in fusion experiments? Physiol. Plant 85: 319–324.

    Article  CAS  Google Scholar 

  • Herrera-Estrella L., M.De Block, E. Messens, J.-P. Hernalsteens, M.Van Montagu & J. Schell, 1983. Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2; 6: 987–995.

    PubMed  CAS  Google Scholar 

  • Hobbs S.L.A., T.D. Warkentin & C.M.O. DeLong, 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Molec. Biol. 21: 17–26.

    Article  CAS  Google Scholar 

  • Hoffmann F. & D. Hess, 1972. Die Aufnahme radioaktiv markierter DNS in isolierte Protoplasten von Petunia hybrida. Z. Pflanzenphysiol. 69: 81–83.

    Google Scholar 

  • Köhler F., C. Golz, S. Eapen & O. Schieder, 1987. Influence of plant cultivar and plasmid-DNA on transformation rates in tobacco and moth bean. Plant Sci. 53: 87–91.

    Article  Google Scholar 

  • Köhler F., G. Cardon, M. Pöhlmann, R. Gill & O. Schieder, 1989. Enhancement of transformation rates in higher plants by low-dose irradiation: are DNA repair systems involved in the incorporation of exogenous DNA into the plant genome? Plant Molec. Biol. 12: 189–199.

    Article  Google Scholar 

  • Köhler F., I. Benediktsson, G. Cardon, C.S. Andreo & O. Schieder, 1990. Effect of various irradiation treatments of plant protoplasts on the transformation rates direct gene transfer. Theor. Appl. Genet. 79: 679–685.

    Article  Google Scholar 

  • Krüger-Lebus S. & I. Potrykus, 1987. A simple and efficient method for direct gene transfer to Petunia hybrida without electroporation. Plant Molec. Biol. Reporter 5 (2): 289–294.

    Article  Google Scholar 

  • Kuo T.M., 1981. Preferential damage of active chromatin by bleomycin. Cancer Res. 41: 2439–2443.

    PubMed  CAS  Google Scholar 

  • Mellon I., A.B. Vilhelm, C.A. Smith & P.C. Hanawalt, 1986. Preferential DNA repair of an active gene in human cells. Proc. Natl. Acad. Sci. USA 83: 8878–8882.

    Article  PubMed  CAS  Google Scholar 

  • Meyer P., E. Walgenbach, K. Bussmann, G. Hombrecher & H. Saedler, 1985. Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol. Gen. Genet. 201 (3): 513–518.

    Article  CAS  Google Scholar 

  • Miller C.K. & H.M. Temin, 1983. High efficiency ligation and recombination of DNA fragments by vertebrate cells. Science 220: 606–609.

    Article  PubMed  CAS  Google Scholar 

  • Morgan W.F. & J.E. Cleaver, 1983. Effect of 3-aminobenzamide on the rate of ligation during the repair of alkylated DNA in human fibroblasts. Cancer Res. 43: 3104–3107.

    PubMed  CAS  Google Scholar 

  • Naim R.S., G.M. Adair, C.B. Christmann & R.M. Humphrey, 1991. Ultraviolet stimulation of intermolecular homologous recombination in Chinese hamster ovary cells. Mol. Carcinogen. 4: 519–526.

    Article  Google Scholar 

  • Negrutiu I., R. Shillito, I. Potrykus, G. Biasini & F. Sala, 1987. Hybrid genes in the analysis of transformation conditions. I. Setting up a simple method for direct gene transfer in plant protoplasts. Plant Molec. Biol. 8: 363–373.

    Article  CAS  Google Scholar 

  • Paszkowski J., R.D. Shillito, M. Saul, V. Mandák, T. Hohn, B. Hohn & I. Potrykus, 1984. Direct gene transfer to plants. EMBO J. 3: 2717–2722.

    PubMed  CAS  Google Scholar 

  • Paszkowski J., M. Baur, A. Bogucki & I. Potrykus, 1988. Gene targeting in plants. EMBO J. 7: 4021–4026.

    PubMed  CAS  Google Scholar 

  • Paszkowski J., A. Peterhans, H. Schlüpmann, C. Basse, E.G. Lebel & J. Masson, 1992. Protoplasts as tools for plant genome modifications. Physiol. Plant 85: 352–356.

    Article  CAS  Google Scholar 

  • Postel E.H., 1985. Enhancement of genetic transformation frequencies of mammalian cell cultures by damage to the cell DNA. Mol. Gen. Genet. 201: 136–139.

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I., 1991. Gene transfer to plants: Assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225.

    Article  CAS  Google Scholar 

  • Pröls M., R. Töpfer, J. Schell & H.H. Steinbiß, 1988. Transient gene expression in tobacco protoplasts: I. Time course of CAT appearance. Plant Cell Rep. 7: 221–224.

    Article  Google Scholar 

  • Puite K.J., 1992. Progress in plant protoplast research. Physiol. Plant 85: 403–410.

    Article  Google Scholar 

  • Schocher R.J., R.D. Shillito, M.W. Saul, J. Pazkowski & I. Potrykus, 1986. Co-transformation of unlinked foreign genes into plants by direct gene transfer. Bio/Technology 4: 1093–1096.

    Article  CAS  Google Scholar 

  • Shillito R.D., M.W. Saul, J. Paszkowski, M. Müller & I. Potrykus, 1985. High efficiency direct gene transfer to plants. Bio/Technology 3: 1099–1103.

    Article  Google Scholar 

  • Shimamoto M., R. Terada, T. Izawa & H. Fujimoto, 1989. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.

    Article  CAS  Google Scholar 

  • Spivak G., A.K. Ganesan & P.C. Hanawalt, 1984. Enhanced transformation of human cells by UV irradiated pSV2 plasmids. Mol. Cell Biol. 4: 1169–1171.

    PubMed  CAS  Google Scholar 

  • Terleth C., P.van de Putte & J. Brouver, 1991. New insights in DNA repair: preferential repair of transcriptionally active DNA. Mutagenesis 6: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S., B. Spörlein, A.K. Tyagi, R.G. Herrmann & H.U. Koop, 1989. PEG- and electroporation-induced transformation in Nicotiana tabacum: influence of genotype on transformation frequency. Theor. Appl. Genet. 78: 287–292.

    Article  Google Scholar 

  • Umezawa H., 1971. Natural and artificial bleomycins: chemistry and antitumor activities. Pure Appl. Chem. 28: 665–680.

    Article  PubMed  CAS  Google Scholar 

  • Van Duin M., A. Westerveld & J.H.J. Hoeijmakers, 1985. UV stimulation of DNA-mediated transformation of human cells. Mol. Cell Biol. 5 (4): 734–741.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benediktsson, I., Spampinato, C.P. & Schieder, O. Studies of the mechanism of transgene integration into plant protoplasts: improvement of the transformation rate. Euphytica 85, 53–61 (1995). https://doi.org/10.1007/BF00023930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023930

Key words

Navigation