Advertisement

Euphytica

, Volume 41, Issue 1–2, pp 147–162 | Cite as

The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). I. Associations between characteristics

  • J. C. Risi
  • N. W. Galwey
Article

Summary

A germplasm collection comprising 294 accessions of quinoa was evaluated at Cambridge, England, to assess its potential as a break crop for arable agriculture at temperate latitudes. The origins of the accessions ranged from 40°S to 2°N and from sea level to an altitude of 3800 m, and 19 discrete and continuous characteristics describing the plants' pigmentation and morphology and the duration of developmental phases were noted or measured. There was significant variation among accessions for all the continuous characteristics, and the plant and inflorescence dimensions were all fairly strongly correlated, but the associations between the durations of developmental phases were surprisingly weak, suggesting that there is great scope for manipulation of the pattern of development through breeding. Contingency tables revealed associations between pairs of discrete characteristics. The means and variances of many continuous characteristics differed according to the discrete characteristics: for example accessions with branched plants took longer to germinate and were more variable in this respect than those with unbranched plants. Sometimes one form of a discrete characteristic was associated with a homogeneous group of accessions but the alternative form was not: such a relationship would be easily lost in a multivariate analysis. On the basis of there relationships, and using knowledge of the accessions' origins, they were classified into seven groups. It is concluded that the plant characteristics required for temperate agriculture are present to a large extent in the accessions from near sea level in southern-central Chile, but that the seed characteristics are scattered throughout the germplasm.

Key words

Chenopodium quinoa quinoa Andean crops germplasm evaluation genetic diversity linear models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguirre, L. & M.E. Tapia, 1982. Estudio sobre quínuas de valle. In: Tercer congreso internacional sobre cultivos andinos. Instituto Boliviano de Tecnología Agropecuaria, Instituto Interamericano de Ciencias Agrícolas, La Paz, Bolivia. pp. 55–61.Google Scholar
  2. Cardenas, M., 1949. Plantas alimenticias de los Andes de Bolivia. Folia Universitaria 3: 109–113. Bolivia.Google Scholar
  3. Everitt, B.S., 1977. The Analysis of Contingency Tables. Chapman and Hall, London, 128pp.Google Scholar
  4. Flores A., F.G., 1977. Estudio preliminar de la fenología de la quínua (Chenopodium quinoa Willd). Ingeniero Agrónomo thesis, Universidad Nacional Técnica del Altiplano, Puno, Peru.Google Scholar
  5. Frankel, O.H. & A.H.D. Brown, 1984. Plant genetic resources today: a critical appraisal. In: J.H.W. Holden & J.T. Williams (Eds), Crop genetic resources: conservation and evaluation. George Allen and Unwin Ltd., London. pp. 249–257.Google Scholar
  6. Frankel, O.H. & M.E. Soule, 1981. Conservation and evolution. Cambridge University Press, Cambridge, England. 327pp.Google Scholar
  7. Gandarillas, H., 1967. Observaciones sobre la biología reproductiva de la quínua. Sayaña 5: 26–29.Google Scholar
  8. Gandarillas, H., 1968. Razas de quínua. Boletin No. 34. Instituto Boliviano de Cultivos Andinos, División de Investigaciones Agrícolas, Ministerio de Agricultura, La Paz, Bolivia.Google Scholar
  9. Gandarillas, H., 1974. Genética y origen de la quínua. Boletin No. 9. Instituto Nacional de Trigo, Ministerio de Asuntos Campesinos y Agropecuarios, La Paz, Bolivia.Google Scholar
  10. Gandarillas, H., 1979. Genética y origen. In: M.E. Tapia (Ed.), Quínua y kañiwa. Cultivos andinos. Serie Libros y Materiales Educativos No. 49. Instituto Interamericano de Ciencias Agrícolas, Bogotá, Colombia. pp. 45–64.Google Scholar
  11. Hauptli, H., & S. Jain, 1984. Genetic structure of landrace populations of the New World amaranths. Euphytica 33: 875–884.Google Scholar
  12. I.B.P.G.R., 1981. Descriptores de quínua. International Board of Plant Genetic Resources, Rome.Google Scholar
  13. Leon, J., 1964. Plantas alimenticias andinas. Boletín técnico No. 6. Instituto Interamericano de Ciencias Agrícolas-Zona Andina, Lima, Peru.Google Scholar
  14. Poehlman, J.M., 1968. Breeding field crops. Henry Holt & Co., Inc, New York. 427pp.Google Scholar
  15. Risi C., J., 1986. Adaptation of the Andean grain crop quinoa (Chenopodium quinoa Willd.) for cultivation in Britain. Ph.D. thesis, University of Cambridge, England. 338pp.Google Scholar
  16. Risi, C., J. Galwey & N.W. Galwey, 1984. The Chenopodium grains of the Andes: Inca crops for modern agriculture. In: T.H. Coaker (Ed.), Advances in Applied Biology Vol. X. Academic Press, Inc., London, etc. pp. 145–216.Google Scholar
  17. Risi C., J. & N.W. Galwey, in press. The pattern of genetic diversity in the Andean grain crop quinoa (Chenopodium quinoa Willd). II. Multivariate methods. Submitted to Euphytica.Google Scholar
  18. Simmonds, N.W., 1976. Evolution of crop plants. Longman, London. 408pp.Google Scholar
  19. Wilson, H.D. & C.B. HeiserJr., 1979. The origin and evolutionary relationship of huauzontle (Chenopodium nuttaliae) domesticated chenopod of Mexico. Amer. J. Bot. 66: 198–206.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. C. Risi
    • 1
  • N. W. Galwey
    • 1
  1. 1.Department of Applied BiologyUniversity of CambridgeUK

Personalised recommendations