Advertisement

Plant Molecular Biology

, Volume 28, Issue 4, pp 739–750 | Cite as

Aerobic fermentation in tobacco pollen

  • Marcel Bucher
  • Karl A. Brander
  • Sandro Sbicego
  • Therese Mandel
  • Cris Kuhlemeier
Research Article

Abstract

We characterized the genes coding for the two dedicated enzymes of ethanolic fermentation, alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC), and show that they are functional in pollen. Two PDC-encoding genes were isolated, which displayed reciprocal regulation: PDC1 was anaerobically induced in leaves, whereas PDC2 mRNA was absent in leaves, but constitutively present in pollen. A flux through the ethanolic fermentation pathway could be measured in pollen under all tested environmental and developmental conditions. Surprisingly, the major factor influencing the rate of ethanol production was not oxygen availability, but the composition of the incubation medium. Under optimal conditions for pollen tube growth, approximately two-thirds of the carbon consumed was fermented, and ethanol accumulated into the surrounding medium to a concentration exceeding 100 mM.

Key words

alcohol dehydrogenase fermentation gene expression pollen pyruvate decarboxylase respiration tobacco 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong W, Gaynard TJ: The critical oxygen pressures for respiration in intact plants. Physiol Plant 37: 200–206 (1976).Google Scholar
  2. 2.
    Baburina I, Gao Y, Hu Z, Jordan F, Hohmann S, Furey W: Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine. Biochemistry 33: 5630–5635 (1994).Google Scholar
  3. 3.
    Barman TE: Enzyme Handbok, vol 1, p. 499. Springer-Verlag, Berlin (1969).Google Scholar
  4. 4.
    Berry LJ, NorrisJr WE: Studies on onion root respiration. I. Velocity of oxygen consumption in different segments of root at different temperatures as a function of partial pressure of oxygen. Biochem Biophys Acta 3: 593–606 (1949).Google Scholar
  5. 5.
    Brander KA, Kuhlemeier C: A pollen specific DEAD box protein related to translation initiation factor eIF-4A from tobacco. Plant Mol Biol, in press (1995).Google Scholar
  6. 6.
    Bucher M, Brändle R, Kuhlemeier C: Ethanolic fermentation in transgenic tobacco expressing Zymomonas mobilis pyruvate decarboxylase. EMBO J 13: 2755–2763 (1994).Google Scholar
  7. 7.
    Bucher M, Kuhlemeier C: Long term anoxia tolerance: multilevel regulation of gene expression in the amphibious plant Acorus calamus L. Plant Physiol 103: 441–448 (1994).Google Scholar
  8. 8.
    Candy JM, Duggleby RG: Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis. Biochem J 300: 7–13 (1994).Google Scholar
  9. 9.
    Cossins EA: Ethanol metabolism in plants. In: Hook DD, Crawford RRM (eds) Plant Life in Anaerobic Environments, pp. 169–202. Ann Arbor Scientific Publishers, Ann Arbor, MI (1978).Google Scholar
  10. 10.
    Davies DD, Grego S, Kenworthy P: The control of the production of lactate and ethanol by higher plants. Planta 118: 297–310 (1974).Google Scholar
  11. 11.
    Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Ingles A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ: Molecular analysis of the alcohol dehydrogenase (Adh1) gene of maize. Nucl Acids Res 12: 3983–4000 (1984).Google Scholar
  12. 12.
    Dickinson DB: Germination of lily pollen: respiration and tube growth. Science 150: 1818–1819 (1965).Google Scholar
  13. 13.
    Diefenbach RJ, Candy JM, Mattick JS, Duggleby RG: Effects of substitution of aspartate-440 and tryptophan-487 in the thiamin diphosphate binding region of pyruvate decarboxylase from Zymomonas mobilis. FEBS Lett 296: 95–98 (1992).Google Scholar
  14. 14.
    Dolferus R, Jacobs M, Peacock WJ, Dennis ES: Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 105: 1075–1087 (1994).Google Scholar
  15. 15.
    Dolferus R, Van denBossche D, Jacobs M: Sequence analysis of two null mutant alleles of the single Arabidopsis Adh locus. Mol Gen Genet 224: 297–302 (1990).Google Scholar
  16. 16.
    Dyda F, Furey W, Swaminathan S, Sax M, Farrenkopf B, Jordan F: Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4 Å resolution. Biochemistry 32: 6165–6170 (1993).Google Scholar
  17. 17.
    Erickson HP: Gene knock-outs of c-src, transforming growth factor β1, and tenascin suggest superfluous, nonfunctional expression of proteins. J Cell Biol 120: 1079–1081 (1993).Google Scholar
  18. 18.
    Freeling M, Bennett CB: Maize Adh1. Ann Rev Genet 19: 297–323 (1985).Google Scholar
  19. 19.
    Gancedo C, Serrano R: Energy yielding metabolism. In: Rose AH, Harrison JS (eds) The Yeasts, vol. 3 pp. 205–259. Academic Press, London (1989).Google Scholar
  20. 20.
    Gaut BS, Clegg MT: Molecular evolution of the Adh1 locus in the genus Zea. Proc Natl Acad Sci USA 90: 5095–5099 (1993).Google Scholar
  21. 21.
    Gerlach WL, Sachs MM, Llewellyn D, Finnegan EJ, Dennis ES: Maize alcohol dehydrogenase: a molecular perspective. In: Blonstein AD, King PJ (eds) A Genetic Approach to Plant Biochemistry, pp. 73–100. Springer-Verlag, Wien (1986).Google Scholar
  22. 22.
    Hoekstra FA: Mitochondrial development and activity of binucleate and trinucleate pollen during germination in vitro. Planta 145: 25–36 (1979).Google Scholar
  23. 23.
    Hoekstra FA, Bruinsma J: Respiration and vitality of binucleate and trinucleate pollen. Physiol Plant 34: 221–225 (1975).Google Scholar
  24. 24.
    Hoekstra FA, Bruinsma J: Control of respiration of binucleate and trinucleate pollen under humid conditions. Physiol Plant 48: 71–77 (1980).Google Scholar
  25. 25.
    Hohmann S: Structure and expression of yeast pyruvate decarboxylase structural genes. In: Bisswanger H, Ullrich J (eds) Biochemistry and Physiology of Thiamin Diphosphate Enzymes, pp. 106–114. VCH, Weinheim, Germany (1991).Google Scholar
  26. 26.
    Jansen MAK, Sessa G, Malkin S, Fluhr R: PEPC-mediated carbon fixation in transmitting tract cells reflects style-pollen tube interactions. Plant J 2: 507–515 (1992).Google Scholar
  27. 27.
    Kelley PM: Maize pyruvate decarboxylase mRNA is induced anaerobically. Plant Mol Biol 13: 213–222 (1989).Google Scholar
  28. 28.
    Knox RB: Pollen-pistil interactions. In: Linskens HF, Heslop-Harrison J (eds) Encyclopedia of Plant Physiology, New Series, vol. 17, pp. 508–608. Springer Verlag, Berlin (1984).Google Scholar
  29. 29.
    Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB: Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224 (1990).Google Scholar
  30. 30.
    Konarska RN, Linskens HF: Physiology and biochemistry of the stigmatic fluid of Petunia hybrida. Planta 71: 372–387 (1966).Google Scholar
  31. 31.
    Kyozuka J, Olive M, Peacock WJ, Dennis ES, Shimamoto K: Promoter elements required for developmental expression of the maize Adh1 gene in transgenic rice. Plant Cell 6: 799–810 (1994).Google Scholar
  32. 32.
    LevingsIII CS: Thoughts on cytoplasmic male sterility. Plant Cell 5: 1285–1290 (1993).Google Scholar
  33. 33.
    Linskens HF, Schrauwen J: Measurement of oxygen tension changes in the style during pollen tube growth. Planta 71: 98–106 (1966).Google Scholar
  34. 34.
    Mascarenhas JP: Gene activity during pollen development. Ann Rev Plant Physiol Plant Mol Biol 41: 317–338 (1990).Google Scholar
  35. 35.
    Mulcahy DL: The rise of the angiosperms: a genecological factor. Science 206: 20–23 (1975).Google Scholar
  36. 36.
    Olive M, Peacock WJ, Dennis ES: The anaerobic response element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adhl promoter. Nucl Acids Res 19: 7053–7060 (1991).Google Scholar
  37. 37.
    Owttrim GW, Hofmann S, Kuhlemeier C: Divergent genes for translation initiation factor eIF-4A are coordinately expressed in tobacco. Nucl Acids Res 19: 5491–5496 (1991).Google Scholar
  38. 38.
    Owttrim GW, Mandel T, Trachsel H, Thomas AAM, Kuhlemeier C: Characterization of the tobacco eIF-4A gene family. Plant Mol Biol, 26: 1747–1757 (1991).Google Scholar
  39. 39.
    Paul AL, Ferl RJ: in vivo foorptinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2. Plant Cell 3: 159–168 (1991).Google Scholar
  40. 40.
    Peschke VM, Sachs M: Multiple pyruvate decarboxylase genes in maize are induced by hypoxia. Mol Gen Genet 240: 206–212 (1993).Google Scholar
  41. 41.
    Read SM, Clarke AE, Bacic A: Requirements for division of the generative nucleus in cultured pollen tubes of Nicotiana. Protoplasma 174: 101–105 (1993).Google Scholar
  42. 42.
    Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzki O: Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81: 3379–3383 (1984).Google Scholar
  43. 43.
    Roberts JKM, Chang K, Webster C, Callis J, Walbot V: Dependence of ethanolic fermentation, cytoplasmic pH regulation, and viability on the activity of alcohol dehydrogenase in hypoxic maize root tips. Plant Physiol 89: 1275–1278 (1989).Google Scholar
  44. 44.
    Rousselin P, Lepingle A, Faure J-D, Bitoun R, Caboche M: Ethanol-resistant mutants of Nicotiana plumbaginifolia are deficient in the expression of pollen and seed alcohol dehydrogenase activity. Mol Gen Genet 222: 409–415 (1990).Google Scholar
  45. 45.
    Ruhland W, Ramshorn K: Aerobe Gärung in aktiven pflanzlichen Meristemen. Planta 28: 471–514 (1938).Google Scholar
  46. 46.
    Ruhland W, Ullrich H: Aerobe Gärung in wachsenden Pflanzengeweben. Ber Sächs Akad Wiss Math Phys 88: 11–20 (1936).Google Scholar
  47. 47.
    Schwartz D: Genetic control of alcohol dehydrogenase. A competition model for regulation of gene action. Genetics 67: 411–425 (1971).Google Scholar
  48. 48.
    Snow AA, Spira TP: Pollen vigour and the potential for sexual selection in plants. Nature 352: 796–797 (1991).Google Scholar
  49. 49.
    Stanley RG, Linskens HF: Oxygen tension as a control mechanism in pollen tube rupture. Science 157: 833–834 (1967).Google Scholar
  50. 50.
    Tupy J, Rihova L: Changes and growth effect of pH in pollen tube culture. J Plant Physiol 115: 1–10 (1984).Google Scholar
  51. 51.
    Twell D: The diversity and regulation of gene expression in the pathway of male gametophyte development, in press (1995).Google Scholar
  52. 52.
    Ullrich J, Kellermann J, Schmidt W: Homeotetrameric pyruvate decarboxylase (PDC; EC 4.1.1.1.) from ABYS1 yeast: C- and N-terminals and some kinetic properties. In: Bisswanger H, Ullrich J (eds) Biochemistry and Physiology of Thiamin Diphosphate Enzymes, pp. 99–105. VCH, Weinheim, Germany (1991).Google Scholar
  53. 53.
    Verwoerd TC, Dekker BM, Hoekema A: A small-scale procedure for the rapid isolation of plant RNAs. Nucl Acids Res 17: 2362 (1989).Google Scholar
  54. 54.
    Warmke HE, Lee S-LJ: Pollen abortion in T cytoplasmic male-sterile corn (Zea mays): a suggested mechanism. Science 200: 561–563 (1978).Google Scholar
  55. 55.
    Wisman E, Ramanna MS, Zabel P: Isolation of two independent allyl alcohol resistant Adh-1 null mutants in tomato following selection of pollen and seeds. Plant Science 95: 79–88 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Marcel Bucher
    • 1
  • Karl A. Brander
    • 1
  • Sandro Sbicego
    • 1
  • Therese Mandel
    • 1
  • Cris Kuhlemeier
    • 1
  1. 1.Institute of Plant PhysiologyUniversity of BerneBerneSwitzerland

Personalised recommendations