Skip to main content
Log in

Relationship between allelic variation of Glu-1 and Gli-1/Glu-3 prolamin loci and gluten strength in hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Allelic variation of prolamin loci was examined in the F2 from crosses between the hexaploid wheat varieties: ‘Cajeme 71’, ‘Yécora 70’, ‘Ablaca’, ‘Anza’, ‘Pané 247’ and ‘Axona’. Different allelic blocks for gliadins and LMW glutenin subunits were determined in Gli-1, Gli-2 and Glu-3 loci. A percentage of recombination of 1.5 ± 0.3 was determined between Gli-A1 and Glu-3 in the F2 progeny of ‘Yécora 70’ x ‘Axona’. A significant positive association was found between gluten strength, measured by SDS-sedimentation volume, and the prolamins coded by ‘Anza’ Gli-D1/Glu-D3 loci and ‘Yécora 70’ Gli-A1/Glu-A3 loci. Interactions between non homeologous loci Glu-1 and Gli-1/Glu-3 were also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BakerR. & W.Bushuk, 1978. Inheritance of differences in gliadin electrophoregrams in the progeny of ‘Neepawa’ and ‘Pitic 62’. Can J Plant Sci 58: 325–328.

    Google Scholar 

  • BietzJ.A., K.W.Shepherd & J.S.Wall, 1975. Single-kemel analysis of glutenin use in wheat genetics and breeding. Cereal Chem 52: 513–532.

    Google Scholar 

  • BournofT. & R.Bouriquet, 1980. Glutenin subunits of genetically related European hexaploid wheat cultivars: their relation to bread-making quality. Theor Appl Genet 58: 107–111.

    Google Scholar 

  • BranlardG. & M.Dardevet, 1985a. Diversity of grain protein and bread wheat quality. II. Correlation between high-molecular-weight subunits of glutenin and flour quality characteristic. J Cereal Sci 3: 345–354.

    Google Scholar 

  • BranlardG. & M.Dardevet., 1985. Diversity of grain proteins and bread wheat quality. I. Correlation between gliadin bands and flour quality characteristics. J Cereal Sci 3: 329–343.

    Google Scholar 

  • CampbellW.P., C.W.Wrigley, P.J.Cressey & C.R.Slack, 1987. Statistical correlation between quality attributes and grain-protein compositions for 71 hexaploid wheats used as breeding parents. Cereal Chem 64: 293–299.

    Google Scholar 

  • CarrilloJ.M., M.Rousset, C.O.Qualset & D.D.Kasarda, 1990. Use of recombinant inbred lines of wheat for study of associations of high-molecular-weight glutenin subunit alleles to quantitative traits. 1. Grain yield and quality prediction test. Theor Appl Genet 79: 321–330.

    Google Scholar 

  • CresseyP.J., W.P.Campbell, C.W.Wrigley & W.B.Griffing, 1987. Statistical correlations between quality attributes and grain-protein composition for 60 advances lines of cross bread wheat. Cereal Chem 64: 299–301.

    Google Scholar 

  • DongH., T.S.Cox, R.G.Sears & G.L.Lookhart, 1991. High molecular weight glutenin effects on quality in wheat. Crop Sci 31: 974–979.

    Google Scholar 

  • GuptaR.B. & F.MacRitchie, 1994. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats. II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci, 19: 19–29.

    Google Scholar 

  • Gupta, R.B. & K.W. Shepherd. 1987. Genetic control of LMW glutenin subunits in bread wheat and association with physical dough properties. In: L. Lasztity & F. Bekes (Eds), Gluten Proteins. Proceedings of the IIIrd Gluten Protein Workshop. Budapest, May 9–12, pp. 13–19.

  • Gupta, R.B. & K.W. Shepherd, 1988. Low-molecular-weight glutenin subunits in wheat: their variation, inheritance and association with bread-making quality. In: T.E. Moller & R.M.D. Bekes (Eds), Gluten Proteins. Proceedings of the 7th Wheat Genet Symp Bath, U.K., pp. 943–949.

  • GuptaR.B. & K.W.Shepherd, 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. I. Variation and genetic control in hexaploid wheats. Theor Appl Genet 80: 65–74.

    Google Scholar 

  • HamerR.J., P.L.Weegels & P.Marseille, 1992. Prediction of the breadmaking quality of wheat: the use of HMW glutenin-A subunit-based quality scoring systems. J Cereal Sci 15: 91–102.

    Google Scholar 

  • JacksonE.A., L.M.Holt & P.I.Payne. 1983. Characterization of high-molecular-weight gliadin and low-molecular-weight glutenin subunits of wheat endosperm by two-dimensional electrophoresis and the chromosomal localization of their controlling genes. Theor Appl Genet 66: 29–37.

    Google Scholar 

  • JohanssonE., P.Hendriksson, G.Svensson & W.K.Heneen, 1993. Detection, chromosomal location and evaluation of the functional value of a novel high M r glutenin subunit found in Swedish wheats. J Cereal Sci 17: 237–245.

    Google Scholar 

  • KolsterP., F.A.vanEuwijk & W.M.J.vanGelder, 1991. Additive and epistatic effects of allelic variation at the high molecular weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica 55: 277–285.

    Google Scholar 

  • LafiandraD. & D.D.Kasarda, 1985. One- and two-dimensional (Two-pH) polyacrylamide gel electrophoresis in a single gel separation of wheat proteins. Cereal Chem 62: 314–319.

    Google Scholar 

  • LagudahE.S., L.O'Brien & G.M.Halloran, 1988. Influence of gliadin composition and high molecular weight subunits of glutenin on dough properties in a F3 population of a bread wheat cross. J Cereal Sci 7: 33–42.

    Google Scholar 

  • LawrenceG.J. & W.E.Shepherd, 1981. Inheritance of glutenin protein subunits of wheat. Theor Appl Genet 60: 333–337.

    Google Scholar 

  • LorenzoA., W.E.Kronstad & L.G.E.Vieira, 1987. Relationship between high molecular weight glutenin subunits and loaf volume in wheat as measured by the sodium dodecyl sulphate sedimentation test. Crop Sci 27: 253–257.

    Google Scholar 

  • MansurL.M., C.O.Qualset & D.D.Kasarda, 1990. Effects of ‘Cheyenne’ chromosomes on milling and baking quality in ‘Chinese Spring’ wheat in relation to glutenin and gliadin storage proteins. Crop Sci 30: 593–602.

    Google Scholar 

  • MechanD.K., D.D.Kasarda & C.O.Qualset, 1978. Genetic aspects of wheat gliadin proteins. Biochem Genet 16: 831–835.

    Google Scholar 

  • MetakovskyE.V., M.G.Akhmedov & A.A.Sozinov, 1986. Genetic analysis of gliadin-encoding genes reveals gene clusters as well as single remote genes. Theor Appl Genet 73: 278–285.

    Google Scholar 

  • MetakovskyE.V., A.Novoselskaya, N.N.Kopus, T.A.Sobko & A.A.Sozinov, 1984a. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet 67: 559–568.

    Google Scholar 

  • MetakovskyE.V., A.Novoselskaya & A.A.Sozinov, 1984b. Genetic analysis of gliadin components in winter wheat using two-dimensional polyacrylamide gel electrophoresis. Theor Appl Genet 69: 31–37.

    Google Scholar 

  • MetakovskyE.V., C.W.Wrigley, F.Bekes & R.B.Gupta, 1990. Gluten polypeptides as useful genetic markers of dough quality in Australian wheats. Aust J Agric Res 41: 289–306.

    Google Scholar 

  • MoonenJ.H.E., A.Scheepstra & A.Graveland, 1982. Use of the SDS-sedimentation test and SDS-polyacrylamide gel electrophoresis for screening breeders samples of wheat for breadmaking quality. Euphytica 31: 677–690.

    Google Scholar 

  • Nieto-TaćadrizM.T., M.R.Perretant & M.Rousset, 1994. Effect of gliadins and LMW subunits of glutenin of dough properties in the F6 recombinant inbred lines from a bread wheat cross. Theor Appl Genet 88: 81–88.

    Google Scholar 

  • PayneP.I., K.G.Corfield & J.A.Blackman, 1979. Identification of a high-molecular weight subunit of glutenin whose presence correlates with breadmaking quality in wheats of related pedigree. Theor Appl Genet 55: 153–159.

    Google Scholar 

  • PayneP.I., K.G.Corfield, L.H.Holt & J.A.Blackman, 1981. Correlations between the inheritance of certain high molecular weight subunits of glutenin and breadmaking quality in progenies of six crosses of bread wheat. J Sci Food Agric 32: 51–58.

    Google Scholar 

  • PayneP.I., E.A.Jackson, L.M.Holt & C.N.Law, 1984. Genetic linkage between endosperm storage protein genes on each of the short arms of chromosomes 1A and 1B in wheat. Theor Appl Genet 67: 235–243.

    Google Scholar 

  • PayneP.I. & G.J.Lawrence, 1983. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun 11: 29–35.

    Google Scholar 

  • PayneP.I., L.M.Holt, A.Y.Worland & C.N.Law, 1982. Structural and genetical studies on the high-molecular-weight subunits of wheat. Part 3. Telocentric mapping of the subunit genes on the long arms of homoelogous group 1 chromosomes. Theor Appl Genet 63: 129–138.

    Google Scholar 

  • PayneP.I., J.A.Seekings, A.J.Worland, M.G.Jarvis & L.M.Holt, 1987. Allelic variation of glutenin subunits and gliadins and its effect on breadmaking quality in wheat: analysis of F5 progeny from Chinese Spring x Chinese Spring (Hope 1A). J Cereal Sci 6: 103–118.

    Google Scholar 

  • PognaN.E., J.C.Autran, F.Mellini, D.Lafiandra & P.Feillet, 1990. Chromosome 1B-encoded gliadins and glutenin subunits in durum wheat: genetics and relationship to gluten strength. J Cereal Sci 11: 15–34.

    Google Scholar 

  • RuizM. & J.M.Carrillo, 1993. Linkage relationships between prolamin genes on chromosomes 1A and 1B in durum wheat. Theor Appl Genet 87: 353–360.

    Google Scholar 

  • SapirsteinH.D. & W.Bushuk, 1985. Computer-aided analyses of gliadin electrophoregrams. I. Improvement of precision of relative mobility determination by using a three reference band standardization. Cereal Chem 62: 372–377.

    Google Scholar 

  • SinghN.K. & L.M.Shepherd, 1988. Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet 75: 628–641.

    Google Scholar 

  • SozinovA.A. & F.A.Poperelya, 1980. Genetic classification of prolamins and its use for plant breeding. Ann Techno Agric 29: 229–245.

    Google Scholar 

  • WallJ.S., 1979. The role of wheat proteins in determining baking quality. In: D.L.Laidman & R.G.Wyn Jones (Eds.) Recent Advances in the Biochemistry of Cereals, pp. 275–311. Academic, London/New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez-Ouijano, M., Carrillo, J.M. Relationship between allelic variation of Glu-1 and Gli-1/Glu-3 prolamin loci and gluten strength in hexaploid wheat. Euphytica 91, 141–148 (1996). https://doi.org/10.1007/BF00021063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00021063

Key words

Navigation