Skip to main content
Log in

Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Rhizobium wild-type strain GRH2 was originally isolated from the tree, Acacia cyanophylla, and has a broad host-range which includes herbaceous legumes, such as Phaseolus and Trifolium species. Here we show that strains of Rhizobium sp. GRH2, into which heterologous nodD alleles have been introduced, produce a large diversity of both sulphated and non-sulphated lipo-chitin oligosaccharides (LCOs). Most of the molecular species contain an N-methyl group on the reducing-terminal N-acetyl-glucosamine. The LCOs vary in the nature of the fatty acyl chain and in the length of the chitin backbone. The majority of the LCOs have an olgosaccharide chain length of five GlcNAc residues, but a few are oligomers having six GlcNAc units. LCOs purified from GRH2 are able to induce root hair formation and deformation on Acacia cyanophylla and A. melanoxylon plants. We show that an N-vaccenoyl-chitopentaose bearing an N-methyl group is able to induce nodule primordia on Phaseolus vulgaris, A. cyanophylla, and A. melanoxylon, indicating that for these plants an N-methyl modification is sufficient for nodule primordia induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen ON, Allen EK: The Leguminosae. Macmillan, London (1981).

    Google Scholar 

  2. Bec-Ferté MP, Krishnan HB, Promé D, Savagnac A, Pueppke SG, Promé JC: Structures of nodulation factors from the nitrogen-fixing soybean symbiont Rhizobium fredii USDA257. Biochemistry 33: 11782–11788 (1994).

    PubMed  Google Scholar 

  3. Brown SM, Walsh KB: Anatomy of the legume nodule cortex with respect to nodule permeability. Aust J Plant Physiol 21: 49–68 (1994).

    Google Scholar 

  4. van Brussel AAN, Bakhuizen R, van Spronsen P, Spaink HP, Tak T, Lugtenberg BJJ, Kijne J: Induction of pre-infection thread structures in the host plant by lipooligosaccharides of Rhizobium. Science 257: 70–72 (1992).

    Google Scholar 

  5. van Brussel AAN, Zaat SAJ, Canter Cremers HCJ, Wijffelman CA, Pees E, Tak T, Lugtenberg EJJ: Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch. J Bact 165: 517–522 (1986).

    PubMed  Google Scholar 

  6. Calvert HE, Pence MK, Pierce M, Malik NSA, Bauer WD: Anatomical analysis of the development and distribution of Rhizobium infections in soybean roots. Can J Bot 62: 2375–2384 (1984).

    Google Scholar 

  7. Carlson RW, Price NPJ, Stacey G: The biosynthesis of rhizobial lipo-oligosaccharides nodulation signal molecules. Mol Plant-Microbe Interact 7: 684–695 (1994).

    PubMed  Google Scholar 

  8. Carlson RW, Sanjuan J, Bhat UR, Spaink HP, Wijfjes AHM, van Brussel AAN, Stokkermans TJW, Peters K, Stacey G: The structures and biological activities of the lipo-oligosaccharide nodulation signals produced by Type I and Type II strains of Bradyrhizobium japonicum. J Biol Chem 268: 18372–18381 (1993).

    PubMed  Google Scholar 

  9. Dénarié J, Truchet G, Promé JC: Rhizobium nodulation factors: synthesis and plant responses. In: Daniels M, Downie JA, Osbourn AE (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, Vol 3, pp. 81–90. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  10. Ditta G, Stanfield S, Corbin D, Helinski DR: Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77: 7347–7351 (1980).

    PubMed  Google Scholar 

  11. Fåhraeus G: The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16: 374–381 (1957).

    PubMed  Google Scholar 

  12. Gil-Serrano A, Sánchez del Junco A, Tejero-Mateo P, Megías M, Caviedades MA: Structure of the extracellular polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydr Res 204: 103–107 (1990).

    Article  PubMed  Google Scholar 

  13. Herrera MA, Bedmar EJ, Olivares J: Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci 42: 177–182 (1985).

    Article  Google Scholar 

  14. Krishnan HB, Pueppke SG: Host range, RFLP, and antigenic relationships between Rhizobium fredii strains and Rhizobium sp. NGR234. Plant Soil 161: 21–29 (1994).

    Google Scholar 

  15. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J: Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344: 781–784 (1990).

    Article  PubMed  Google Scholar 

  16. López-Lara IM, van den Berg JDJ, Thomas-Oates JE, Glushka J, Lugtenberg BJJ, Spaink HP: Structural identification of the lipo-chitin oligosaccharide signals from Rhizobium loti. Mol Microbiol 15: 627–638 (1995).

    PubMed  Google Scholar 

  17. López-Lara IM, Orgambide G, Dazzo FB, Olivares J, Toro N: Characterization and symbiotic importance of acidic extracellular polysaccharide of Rhizobium sp. GRH2 isolated from Acacia. J Bact 175: 2826–2832 (1993).

    PubMed  Google Scholar 

  18. Martínez-Romero E: Recent development in Rhizobium taxonomy. Plant Soil 161: 11–20 (1994).

    Google Scholar 

  19. Martínez-Romero E, Segovia L, Martins Mercante F, Franco AA, Graham P, Pardo MA: Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bact 41: 417–426 (1991).

    Google Scholar 

  20. Mergaert P, van Montagu M, Promé J, Holsters M: Three unusual modifications, a D-arabinosyl, an N-methyl, and a carbamoyl group, are present on the Nod factors of Azorhizobium caulinodans strain ORS571. Proc Natl Acad Sci USA 90: 1551–1555 (1993).

    PubMed  Google Scholar 

  21. Plazinski J, Rigde RW, McKay IA, Djordjevic MA: The nodABC genes of Rhizobium leguminosarum biovar. trifolii confer root-hair curling to a diverse range of soil bacteria and the ability to induce novel root swellings on beans. Aust J Plant Physiol 21: 311–325 (1994).

    Google Scholar 

  22. Poupot R, Martínez-Romero E, Promé JC: Nodulation factors from Rhizobium tropici are sulphated or nonsulphated chitopentasaccharides containing an N-methyl-N-acylglucosaminyl terminus. Biochemistry 32: 10430–10435 (1993).

    PubMed  Google Scholar 

  23. Price NPJ, Relic B, Talmont F, Lewin A, Promé D, Pueppke SG, Maillet F, Dénarié J, Promé JC, Broughton WJ: Broad-host-range Rhizobium species NGR234 secretes a family of carbamoylated, and fucosylated, nodulation signals that are O-acetylated or sulphated. Mol Microbiol 6: 3575–3584 (1992).

    PubMed  Google Scholar 

  24. Relic B, Staehelin C, Fellay R, Jabbouri S, Boller T, Broughton WJ: Do Nod factor levels play a role in host-specificity? In: Kiss GB, Endre G (eds) Proceedings of the 1 st European Nitrogen Fixation Conference, pp. 69–75. Officina Press, Szeged (1994).

    Google Scholar 

  25. Relic B, Talmont F, Kopcinska J, Golinowski W, Promé JC, Broughton WJ: Biological activity of Rhizobium sp. NGR234 Nod-factors on Macroptilium atroporpureum. Mol Plant-Microbe Interact 6: 764–774 (1993).

    PubMed  Google Scholar 

  26. Roche P, Debellé F, Maillet F, Lerouge P, Faucher C, Truchet G, Dénarié J, Promé JC: Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulphation of lipo-oligosaccharide signals. Cell 67: 1131–1143 (1991).

    PubMed  Google Scholar 

  27. Sanjuan J, Carlson RW, Spaink HP, Bhat UR, Barbour WM, Glushka J, Stacey G: A 2-O-methylfucose moiety is present in the lipo-oligosaccharide nodulation signal of Bradyrhizobium japonicum. Proc Natl Acad Sci USA 89: 8789–8793 (1992).

    PubMed  Google Scholar 

  28. Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A: Rhizobium meliloti produces a family of sulphated lipo-oligosaccharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 89: 192–196 (1992).

    PubMed  Google Scholar 

  29. Spaink HP, Bloemberg GV, Wijfjes AHM, Ritsema T, Geiger O, López-Lara IM, Harteveld M, Kafetzopoulos D, van Brussel AAN, Kijne JW, Lugtenberg BJJ, van der Drift KMGM, Thomas-Oates JE, Potrykus I, Sautter C: The molecular basis of host specificity in the Rhizobium leguminosarum-plant interaction. In: Daniels M, Downie JA, Osbourn AE (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, Vol 3, pp. 91–98. Kluwer Academic Publishers, Dordrecht (1994).

    Google Scholar 

  30. Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ: A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354: 125–130 (1992).

    Google Scholar 

  31. Spaink HP, Wijffelman CA, Okker RJH, Lugtenberg EJJ: Localization of functional regions of the Rhizobium nodD product using hybrid nodD genes. Plant Mol Biol 12: 59–73 (1989).

    Article  Google Scholar 

  32. Spaink HP, Wijffelman CA, Pees E, Okker RJH, Lugtenberg BJJ: Rhizobium nodulation gene nodD as a determinant of host specificity. Nature 328: 337–340 (1987).

    Article  Google Scholar 

  33. Stacey G, Luka S, Sanjuan J, Banfalvi Z, Nieuwkoop AJ, Chun JY, Forsberg LS, Carlson R: nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J Bact 176: 620–633 (1994).

    PubMed  Google Scholar 

  34. Stokkermans TJW, Peters NK: Bradyrhizobium elkanii lipo-oligosaccharides signals induce complete nodules structures on Glycine soja Siebold et Zucc. Planta 193: 413–420 (1994).

    Article  PubMed  Google Scholar 

  35. Taté R, Patriarca EJ, Riccio A, Defez R, Iaccarino M: Development of Phaseolus vulgaris root nodules. Mol Plant-Microbe Interact 7: 582–589 (1994).

    Google Scholar 

  36. Truchet G, Camut S, de Billy F, Odorico R, Vasse J: The Rhizobium-legume symbiosis. Two methods to discriminate between nodules and other root derived structures. Protoplasma 149: 82–88 (1989).

    Google Scholar 

  37. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Promé JC, Dénarié J: Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 351: 670–673 (1991).

    Article  Google Scholar 

  38. Zhan H, Gray JX, Levery SB, Rolfe BG, Leigh JA: Functional and evolutionary relatedness of genes for exopolysaccharide synthesis in Rhizobium meliloti and Rhizobium sp. strain NGR234. J Bact 172: 5245–5253 (1990).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Lara, I.M., van Der Drift, K.M.G.M., van Brussel, A.A.N. et al. Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Mol Biol 29, 465–477 (1995). https://doi.org/10.1007/BF00020978

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020978

Key words

Navigation