Skip to main content
Log in

An experimental demonstration of trophic interactions affecting water quality of Rice Lake, Ontario (Canada)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Eight cylindrical enclosures (3 m diameter, 2.7 m long, V = 20m3) were installed in eutrophic Rice Lake (Ontario, Canada) in late spring of 1987. Fish (yearling yellow perch (Perca flavescens) and macrophytes (Potamogeton crispus) presence and absence were set at the beginning of the experiment to yield four combinations of duplicate treatments. The purpose of the experiment was to determine if the phytoplankton, zooplankton, macrophytes and fish species resident in the lake interact to influence water quality (major ions, phosphorus, algal densities and water clarity).

The presence of fish was associated with: (1) decreased biomass of total zooplankton, (2) decreased number of species in the zooplankton, (3) decreased average size of several zooplankton taxa, (4) higher total phosphorus concentrations, (5) higher phytoplankton and chlorophyll a concentrations, (6) lower water clarity, (7) lower potassium levels during macrophyte die-back, (8) lower pH and higher conductivity in the presence of macrophytes. Biomass of large Daphnia species (but not total zooplankton) was highly correlated with the algal response (r 2 = 0.995) and was associated with reduced biomass of several algal taxa including some large forms (Mougeotia, Oedogonium) and several colonial blue-green algae. However, no significant control of late summer growth of the bloom-forming blue-green alga Anabaena planctonica Brun. was achieved by the Daphnia presence-fish absence treatment. Release of phosphorus to the water column during the die-back of P. crispus was not an important phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, G., W. Granéli & J. Stenson, 1988. The influence of animals on phosphorus cycling in lake ecosystems. Hydrobiologia 170 (Dev. Hydrobiol. 48): 267–284.

    Google Scholar 

  • Badgery, J. E., D. J. McQueen, K. H. Nicholas & P. R. Schaap. 1995. Biomanipulation at Rice Lake, Ontario, Canada. Lake and Reserv. Mgmt 10: 163–173.

    Google Scholar 

  • Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in lake restoration? Schweiz. Z. Hydrol 49/2: 237–248.

    Google Scholar 

  • Benndorf, J., H. Schultz, A. Benndorf, R. Unger, E. Penz., H. Kneschke, K. Kossatz, R. Dumke, U. Hornig, R. Kruspe & S. Reichel, 1988. Food-web manipulation by enhancement of piscivorous fish stocks: long-term effects in the hypertrophic Bautzen Reservoir. Limnologica (Berlin) 19: 97–110.

    Google Scholar 

  • Benndorf, J., 1990. Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 187–203.

    Google Scholar 

  • Best, E. P. H., J. H. A. Dassen, J. J. Boon & G. Wiegers, 1990. Studies on decomposition of Ceratophyllum demersum litter under laboratory and field conditions: losses of dry mass and nutrients, qualitative changes in organic compounds and consequences for ambient water and sediments. Hydrobiologia 194: 91–114.

    Google Scholar 

  • Boston, H. L. & M. A. Perkins, 1982. Water column impacts of macrophytes decomposition beneath fiberglass screens. Aquat. Bot. 14: 15–27.

    Article  Google Scholar 

  • Brabrand, A., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretionversus external loading. Can. J. Fish. aquat. Sci. 47: 364–372.

    Google Scholar 

  • Briand, F. & E. McCauley, 1978. Cybernetic mechanism in lake plankton system: how to control undesirable algae. Nature 273: 228–230.

    Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.

    Article  Google Scholar 

  • CORTS (Canada-Ontario-Rideau-Trent-Severn Study Committee), 1973. The Rideau/Trent/Severn — Yesterday, Today, Tomorrow — A Report on Optimum Recreational Development. Queen's Publisher, Toronto, Ontario, 75 pp.

    Google Scholar 

  • Davidowicz, P., 1990. The effect of Daphnia on filament length of blue-green algae. Hydrobiologia 191 (Dev. Hydrobiol. 53): 265–268.

    Google Scholar 

  • de Bernardi, R. & G. Giussani, 1990. Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 29–41.

    Google Scholar 

  • Forsyth, D. J, J. F. Haney & M. R. James, 1992. Direct observations of toxic effects of cyanobacterial extracellular products on Daphnia. Hydrobiologia 228: 151–155.

    Google Scholar 

  • Granéli, W. & D. Solander, 1988. Influence of aquatic macrophytes on phosphorus cycling in lakes. Hydrobiologia 170 (Dev. Hydrobiol. 48): 245–266.

    Google Scholar 

  • Havens, K. E., 1993. Responses to experimental fish manipulations in a shallow, hypereutrophic lake: the relative importance of benthic nutrient recycling and trophic cascade. Hydrobiologia 254: 73–80.

    Google Scholar 

  • Hebert, P. D. N., B. W. Muncaster & G. L. Mackie, 1989. Ecological and genetic studies on Dreissena polymorpha (Pallas): a new mollusc in the Great Lakes. Can. J. Fish. aquat. Sci. 46: 1587–1591.

    Google Scholar 

  • Hough, R. A., M. D. Fornwall, B. J. Negele, R. L. Thompson & D. A. Putt, 1989. Plant community dynamics in a chain of lakes: principal factors in the decline of rooted macrophytes with eutrophication. Hydrobiologia 173: 199–217.

    Google Scholar 

  • Howard-Williams, C. & B. R. Allanson, 1981. Phosphorus cycling in a dense Potamngeton pectinatus L. bed. Oecologia 49: 56–66.

    Google Scholar 

  • Hutchinson, N. J., B. Clark, J. Munro & B. Neary, 1993. Nutrient budget data for the watersheds of Rice Lake and Sturgeon Lake. R/S Tech. Report No. 3, Ontario Ministry of the Environment and Energy, Toronto.

    Google Scholar 

  • Jones, R. C., K. Walti & M. S. Adams, 1983. Phytoplankton as a factor in the decline of the submersed macrophyte Myrinphyllum spicatum L. in Lake Wingra, Wisconsin, USA. Hydrobiologia 107: 213–219.

    Google Scholar 

  • Lammens, E., R. D. Gulati, M-L. Meijer & E. van Donk, 1990. The first biomanipulation conference: a synthesis. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 619–627.

    Google Scholar 

  • Lampert, W., 1981. Inhibitory and toxic effect of blue-green algae on Daphnia. Int. Rev. ges. Hydrobiol. 66: 285–298.

    Google Scholar 

  • Langer, C. L. & P. L. Hendrix, 1982. Evaluation of a persulphate digestion method for particulate nitrogen and phosphorus. Wat. Res. 16: 1451–1454.

    Article  Google Scholar 

  • Leach, J. H., 1993. Impacts of the zebra mussel (Drei ssena polymorpha) on water quality and fish spawning reefs in western Lake Erie. In T. F. Nalepa & D. W. Schloesser (eds), Zebra Mussels: Biology, Impact and Control: 381–397. Lewis Publishers Inc. Ann Arbor.

    Google Scholar 

  • Limnos Ltd., 1993. Partitioning of phosphorus in Potamogeton crispus. R/S Tech. Report No. 6. Ontario Ministry of the Environment and Energy. Toronto, 22 pp.

    Google Scholar 

  • McQueen, D. J., M. R. Johannes, J. R. Post, T. J. Stewart & D. R. S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59: 289–309.

    Google Scholar 

  • McQueen, D. J., 1990. Manipulating lake community structure: where do we go from here? Freshwat. Biol. 23: 613–620.

    Google Scholar 

  • Michaud, M. T., G. J. Atchison, A. W. McIntosh, R. A. Mayes & D. W. Nelson, 1979. Changes in phosphorus concentrations in a eutrophic lake as a result of macrophyte-kill following herbicide application. Hydrobiologia 66: 105–111.

    Google Scholar 

  • Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201 (Dev. Hydrobiol. 61): 367–377.

    Google Scholar 

  • Moss, B., K. Irvine & J. Stansfield, 1988. Approaches to the restoration of shallow eutrophicatedlakes in England. Verb. int. Ver. Limnol. 23: 414–418.

    Google Scholar 

  • Nicholls, K. H. & E. C. Carney, 1979. The taxonomy of the Bay of Quinte phytoplankton and the relative importance of common and rare taxa. Can. J. Bot. 57: 1591–1608.

    Google Scholar 

  • Nicholls, K. H. & D. A. Hurley, 1989. Recent changes in the phytoplankton of the Bay of Quinte: the relative importance of fish, nutrients and other factors. Can. J. Fish. aquat. Sci. 46: 770–779.

    Google Scholar 

  • Nicholls, K. H. & G. W. Hopkins, 1993. Recent changes in Lake Erie (north shore) phytoplankton: cumulative impacts of phosphorus loading reductions and the zebra mussel introduction. J. Great Lakes Res. 19: 637–647.

    Google Scholar 

  • Nichols, D. S. & D. R. Keeney, 1973. Nitrogen and phosphorus release from decaying water milfoil. Hydrobiologia 42: 509–525.

    Google Scholar 

  • Northcote, T. G., 1988. Fish in the structure and function of freshwater ecosystems: a ‘top-down’ view. Can. J. Fish. aquat. Sci. 45: 361–379.

    Google Scholar 

  • Ontario Ministries of the Environment and Natural Resources, 1976. The Kawartha Lakes Water Management Study-Water Quality Assessment (1972–1976), Toronto, 185 pp.

  • Phillips, G. L., D. F. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated freshwaters. Aquat. Bot. 4: 103–126.

    Article  Google Scholar 

  • Porter, K. G., 1977. The plant-animal interface in freshwater ecosystems. Am. Sci. 65: 159–170.

    Google Scholar 

  • Rogers, K. H. & C. M. Breen, 1982. Decomposition of Potamngeton crispus L.: The effects of drying on the patterns of mass and nutrient loss. Aquat. Bot. 12: 1–12.

    Article  Google Scholar 

  • Shapiro, J., V. Lamarra & M. Lynch, 1975. Biomanipulation: An ecosystem approach to lake restoration. In P. Brezonik & J. Fox (eds), Water Quality Management through Biological Control. Report No. ENV-07–75–1, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Smith, C. S. & M. S. Adams, 1986. Phosphorus transfer from sediments by Myrinphyllum spicatum. Limnol. Oceanogr. 31: 1312–1321.

    Google Scholar 

  • Van Donk, E., 1990. Restoration by biomanipulation in a small hypertrophic lake: first-year results. Hydrobiologia 191 (Dev. Hydrobiol. 53)): 285–295.

    Google Scholar 

  • Webster, J. R. & E. F. Benfield, 1986. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 17: 567–594.

    Article  Google Scholar 

  • Welsh, B. B., C. L. DeGasperi & D. E. Spyridakis, 1988. Sources for internal P loading in a shallow lake. Verb. int. Ver. Limnol. 23: 307–314.

    Google Scholar 

  • Wintermans, J. F. & A. DeMots, 1965. Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim. Biophys. Act. 109: 448–458.

    Google Scholar 

  • Yan, N. D. & G. L. Mackie, 1987. Improved estimation of the dry weight of Holopedium gibberum (Crustacea, Cladocera) using clutch size, a body fat index, and lake water total phosphorus concentration. Can. J. Fish. aquat. Sci. 44: 382–389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, K.H., Michalski, M.F.P. & Gibson, W. An experimental demonstration of trophic interactions affecting water quality of Rice Lake, Ontario (Canada). Hydrobiologia 319, 73–85 (1996). https://doi.org/10.1007/BF00020973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020973

Key words

Navigation