Skip to main content
Log in

Comparison of solutes, nutrients, and bacteria inputs from two types of groundwater to the Rhône river during an artificial drought

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Solute, nutrient and bacterial inputs to the River Rhône from the interstitial habitat of a gravel bar and the floodplain aquifer were investigated during an artificial drought. Eight springs were investigated: four groundwater-fed springs in the floodplain, located at the bottom of the bank; and four interstitial-fed springs located at the downstream end of a gravel bar. During this period, the inflows of groundwater to the river represented an average input of 0.77 mg l−1 of nitrogen (of which 93.3% were nitrates), 0.0187 mg l−1 of total phosphorus (of which 42.2% was orthophosphate), 3.56 mg l−1 of silica, 2.315 ± 0.703 mg l−1 of dissolved organic carbon (DOC, of which 47% was biodegradable) and 7.3 × 104 ± 3.7 × 104 bacteria per ml (of which 8.8% were active). Silica, DOC, biodegradable DOC, and bacteria concentrations displayed temporal variations during the study, which seem to be linked to the biological activity of the groundwater biofilm. There was a strong heterogeneity between the two types of groundwater that flow to the river: concentrations of calcium and alkalinity were higher in bank springs than in gravel bars springs. In these latters, sulfate, sodium, nitrogen, phosphorus were significantly higher.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, J.H. & I. S. Farr, 1977. Origins, characterization and dynamics of suspended bacteria in two chalk streams. Arch. Hydrobiol. 80: 308–326.

    Google Scholar 

  • Boissier, J. M. & D. Fontevielle, 1993. Biodegradable dissolved organic carbon in seepage waters from two forest soils. Soil. Biol. Biochem. 25: 1257–1261.

    Article  Google Scholar 

  • Boissier, J. M. & D. Fontvieille, 1995. Biological characteristics of forest soils and seepage waters during high intensity simulated rainfalls of high intensity. Soil Biol. Biochem. 27: 139–145.

    Article  Google Scholar 

  • Bravard, J. P., 1981. La Chautagne. Institut des études rhodaniennes des universités de Lyon, Mémoires et documents, Lyon.

    Google Scholar 

  • Bravard, J. P., 1985. Le méandre de la Malourdie sur le Rhône court-circuité de Chautagne (Savoie). Dynamique fluviale appliquée à l'écologie. Bull. Rhod. géomorph. 17/18: 3–12.

    Google Scholar 

  • Bravard, J. P., 1987. Le Rhône du Léman à Lyon. La manufacture, Lyon.

    Google Scholar 

  • Conesa, A. P., J. C. Fardeau & G. Simon-Sylvestre, 1979. Le Phosphore et le Soufre. Pédologie In M. Bonneau & B Souchier (eds), Masson, Paris, France: 395–407.

    Google Scholar 

  • Crocker, M. T. & J. L. Meyer, 1987. Interstitial dissolved organic carbon in sediments of southern Appalachian headwater stream. J. N. am. Benthol. Soc. 6: 159–167.

    Google Scholar 

  • Edwards, R. T., J. L. Meyer & S. E. G. Findlay, 1990. The relative contribution of benthic and suspended bacteria to system biomass, production, and metabolism in a low-gradient blackwater river. J. N. am. Benthol. Soc. 9: 216–228.

    Google Scholar 

  • Ford, T. E. & R. J. Naiman, 1989. Groundwater-Surface water relationships in boreal forest watersheds: dissolved organic carbon and inorganic nutrients dynamics. Can. J. Fish. aquat. Sci. 46: 41–49.

    Google Scholar 

  • Fry, J. C., 1988. Determination of biomass. Methods in aquatic bacteriology (Ed B. Austin), John Wiley & Sons Ltd, New York, USA: 27–72.

    Google Scholar 

  • Gibert, J., M. J. Dole-Olivier, P. Marmonier & P. Vervier, 1990. Surface water-Groundwater ecotones. In R. J. Naiman & H. Décamps (eds), The Ecology and Management of Aquatic-Terrestrial Ecotones. Parthenon Publishing, Lancs, UK: 199–225.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1984. Exchange between interstitial and surface water: implications for stream metabolism and nutrient cycling. Hydrobiologia 111: 219–228.

    Google Scholar 

  • Hakenkamp, C. C., H. M. Valett & A. J. Boulton, 1993. Perspectives on the hyporheic: integrating hydrology and biology. Concluding remarks. J. N. am. Benthol. Soc. 12: 94–99.

    Google Scholar 

  • Hendricks, S. P., 1993. Microbial ecology of the hyporheic zone: a perspective integrating hydrology and biology. J. N. am. Benthol. Soc. 12: 70–78.

    Google Scholar 

  • Hendricks, S. P. & D. S. White, 1991. Physicochemical patterns within a hyporheic zone of a northern Michigan river, with comments on surface water patterns. Can. J. Fish. aquat. Sci. 48: 1645–1654.

    Google Scholar 

  • Juget, B. J. Yi, C. Roux, P. Richoux, M. Richardot, J. L. Reygrobellet & C. Amoros, 1979. Structure et fonctionnement des écosystèmes du Haut-Rhone français. VII-Le complexe hydrodynamique de la lône des pécheurs (un ancien méandre de Rhône). Schweiz. Z. Hydrol. 41: 395–417.

    Article  Google Scholar 

  • Leff, L. G., J. V. McArthur & L. J. Shimkets, 1993. Evaluation of sources of bacteria in coastal plain streams using gram staining. Arch. Hydrobiol. 126: 461–468.

    Google Scholar 

  • Marxsen, J., 1988. Investigations into the number of respiring bacteria in groundwater from sandy and gravelly deposits. Microb. Ecol. 16: 65–72.

    Google Scholar 

  • Mc Dowell, W. H., 1984. Temporal changes in numbers of suspended bacteria in a small woodland stream. Verh. int. Ver. Limnol. 22: 1920–1925.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analyt. Chem. Acta 27: 31–36.

    Article  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. Use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Reddy, G. Y., E. O. Mc Lean, G. D. Hoyt & T. J. Logan, 1978. Effect of soil, cover crop, and nutrient source on amount and forms of phosphorus movement under simulated rainfall conditions. J. envir. Qual. 7: 50–54.

    Google Scholar 

  • Rodriguez, G. G., D. Phipps, K. Ishiguro & H. F. Ridgway, 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. envir. Microbiol. 58: 1801–1808.

    Google Scholar 

  • Servais, P., A. Anzyl & C. Ventresque, 1989. A simple method for the determination of the biodegradable dissolved organic carbon in waters. Appl. Envir. Microbiol. 55: 2732–2734.

    Google Scholar 

  • Servais, P., G. Billen & M. C. Hascoët, 1987. Determination of the biodegradable fraction of dissolved organic matter in waters. Wat. Res. 21: 445–450.

    Article  Google Scholar 

  • Triska, F. J., V. C. Kennedy, R. J. Avanzino, G. W. Zellweger & K. E. Bencala, 1989. Retention and transport of nutrients in a third order stream in northwestern california: hyporheic processes. Ecology 70: 1893–1905.

    Google Scholar 

  • Triska, F. J., J. H. Duff & R. J. Avanzino, 1990. Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Can. J. Fish. aquat. Sci. 47: 2099–2111.

    Google Scholar 

  • Valett, M. H., 1993. Surface-hyporheic interactions in a Sonoran desert stream: hydrologic exchange and diel periodicity. Hydrobiologia 259: 133–144.

    Google Scholar 

  • Valett, M. H., G. H. Fisher & E. H. Stanley, 1990. Physical and chemical characteristics of the hyporheic zone of a Sonoran desert stream. J. N. am. Benthol. Soc. 9: 201–215.

    Google Scholar 

  • Vervier, P., J. Gibert, P. Marmonier & M. J. Dole-Olivier, 1992. Perspective on permeability of surface freshwater/groundwater ecotone. J. N. Am. Benthol. Soc. 11: 93–102.

    Google Scholar 

  • Wainright, S. A., C. A. Couch & J. L. Meyer, 1992. Fluxes of bacteria and organic matter into a blackwater river from river sediments and floodplain soils. Freshwat. Biol. 28: 37–48.

    Google Scholar 

  • Wallis, P. M., H. B. N. Hynes & S. A. Telang, 1981. The importance of groundwater in the transportation of allochtonous dissolved organic matter to the streams draining a small mountain basin. Hydrobiologia 79: 77–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boissier, JM., Marmonier, P., Claret, C. et al. Comparison of solutes, nutrients, and bacteria inputs from two types of groundwater to the Rhône river during an artificial drought. Hydrobiologia 319, 65–72 (1996). https://doi.org/10.1007/BF00020972

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00020972

Key words

Navigation